Skip to main content
Log in

Passage of an ion-acoustic solitary wave through the boundary between an electron-ion plasma and a negative ion plasma

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The passage of an ion-acoustic solitary wave through the boundary between an electron-ion plasma and a negative ion plasma is considered. After the ion-acoustic solitary wave enters the region of another plasma, a disturbance arises, from which an ion-acoustic solitary wave and a chain of oscillations form over time. The amplitude of the ion-acoustic solitary wave after passage through the boundary changes in such a way that its value in the electron-ion plasma is greater than its value in the negative ion plasmas. An exception is the case of a compressive ion-acoustic solitary wave propagating through the negative ion plasma and having an amplitude exceeding the critical amplitude in the electron-ion plasma. Such an ion-acoustic solitary wave, when entering an electron-ion plasma, releases an excess of energy to accelerate positive ions and thereby reduces its amplitude below the critical value. The dependence of the amplitude of an ion-acoustic solitary wave established after the boundary crossing on its initial amplitude is determined. The passage of an ion-acoustic solitary wave through a layer of negative ion plasma surrounded by electron-ion plasmas is considered. It is shown that the passage of a rarefactive ion-acoustic solitary wave from the negative ion plasma into the electron-ion plasma causes disturbance, in which accelerated and trapped negative ions can be observed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data were obtained using numerical calculations and presented graphically in this article. Numerical data are available from the corresponding author on reasonable request.].

References

  1. S. Goeler, T. Ohe, N. D’Angelo, J. Appl. Phys. 37, 2519 (1966)

    Article  ADS  Google Scholar 

  2. A.Y. Wong, D.L. Mamas, D. Arnush, Phys. Fluids 18, 1489 (1975)

    Article  ADS  Google Scholar 

  3. M. Bacal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  4. G.O. Ludwig, J.L. Ferreira, Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984)

    Article  ADS  Google Scholar 

  5. Y. Nakamura, I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984)

    Article  ADS  Google Scholar 

  6. Y. Nakamura, J.L. Ferreira, G.O. Ludwig, J. Plasma Phys. 33, 237 (1985)

    Article  ADS  Google Scholar 

  7. Y. Nakamura, I. Tsukabayashi, J. Plasma Phys. 34, 401 (1985)

    Article  ADS  Google Scholar 

  8. Y. Nakamura, I. Tsukabayashi, G.O. Ludwig, J.L. Ferreira, Phys. Lett. 113A, 155 (1985)

    Article  ADS  Google Scholar 

  9. J.L. Cooney, M.T. Gavin, J.E. Williams, D.W. Aossey, K.E. Lonngren, Phys. Fluids B 3, 3277 (1991)

    Article  ADS  Google Scholar 

  10. J.L. Cooney, D.W. Aossey, J.E. Williams, K.E. Lonngren, Phys. Rev. E 47, 564 (1993)

    Article  ADS  Google Scholar 

  11. J.L. Cooney, D.W. Aossey, J.E. Williams, M.T. Gavin, H.S. Kim, Y.-C. Hsu, A. Scheller, K.E. Lonngren, Plasma Sources Sci. Technol. 2, 73 (1993)

    Article  ADS  Google Scholar 

  12. D.W. Aossey, J.L. Cooney, J.E. Williams, K.E. Lonngren, J. Phys. D Appl. Phys. 26, 215 (1993)

    Article  ADS  Google Scholar 

  13. S. Yi, J.L. Cooney, H.-S. Kim, A. Amin, Y. El-Zein, K.E. Lonngren, Phys. Plasmas 3, 529 (1996)

    Article  ADS  Google Scholar 

  14. Q.-Z. Luo, N. D’Angelo, R.L. Merlino, Phys. Plasmas 5, 2868 (1998)

    Article  ADS  Google Scholar 

  15. T. Takeuchi, S. Iizuka, N. Sato, Phys. Rev. Lett. 80, 77 (1998)

    Article  ADS  Google Scholar 

  16. N. Sato, Plasma Sources Sci. Technol. 3, 395 (1994)

    Article  ADS  Google Scholar 

  17. N. Sato, T. Mieno, T. Hirata, Y. Yagi, R. Hatakeyama, S. Iizuka, Phys. Plasmas 1, 3480 (1994)

    Article  ADS  Google Scholar 

  18. T. Hirata, R. Hatakeyama, T. Mieno, S. Iizuka, N. Sato, Plasma Sources Sci. Technol. 5, 288 (1996)

    Article  ADS  Google Scholar 

  19. W. Oohara, R. Hatakeyama, S. Ishiguro, Plasma Phys. Control. Fusion 44, 1299 (2002)

    Article  ADS  Google Scholar 

  20. W. Oohara, R. Hatakeyama, S. Ishiguro, Phys. Rev. E 68, 066407 (2003)

    Article  ADS  Google Scholar 

  21. Y.V. Medvedev, Plasma Phys. Rep. 43, 37 (2017). https://doi.org/10.1134/S1063780X17010093

    Article  ADS  Google Scholar 

  22. R.Z. Sagdeev, in Reviews of Plasma Physics, vol. 4, ed. by M.A. Leontovich (Consultants Bureau, New York, 1966)

  23. Y.V. Medvedev, Plasma Phys. Rep. 35, 62 (2009). https://doi.org/10.1134/S1063780X09010085

    Article  ADS  Google Scholar 

  24. Y.V. Medvedev, Nonlinear Phenomena During Decays of Discontinuities in a Rarefied Plasma (Fizmatlit, Moscow, 2012). [in Russian]

    Google Scholar 

  25. Y.A. Berezin, V.I. Karpman, Sov. Phys. JETP 24, 1049 (1967)

    ADS  Google Scholar 

  26. E. Okutsu, Y. Nakamura, Plasma Phys. 21, 1053 (1979)

    Article  ADS  Google Scholar 

  27. Y.V. Medvedev, J. Phys. Commun. 2, 045001 (2018). https://doi.org/10.1088/2399-6528/aab8a1

    Article  Google Scholar 

  28. Y.V. Medvedev, Plasma Phys. Rep. 44, 544 (2018). https://doi.org/10.1134/S1063780X18060077

    Article  ADS  Google Scholar 

  29. Y.V. Medvedev, Eur. Phys. J. D 73, 157 (2019). https://doi.org/10.1140/epjd/e2019-100067-4

    Article  ADS  Google Scholar 

  30. Y.V. Medvedev, Plasma Phys. Rep. 45, 230 (2019). https://doi.org/10.1134/S1063780X19020077

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author performed the simulations and wrote the manuscript.

Corresponding author

Correspondence to Yury Medvedev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, Y. Passage of an ion-acoustic solitary wave through the boundary between an electron-ion plasma and a negative ion plasma. Eur. Phys. J. D 75, 6 (2021). https://doi.org/10.1140/epjd/s10053-020-00007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00007-1

Navigation