Skip to main content

Advertisement

Log in

Energy levels of magnetic quantum dots in gapped graphene

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the energy levels of charge carriers confined in a magnetic quantum dot in graphene surrounded by a infinite graphene sheet in the presence of energy gap. We explicitly determine the eigenspinors for both valleys K and \(K'\), whereas we use the boundary condition at interface of the quantum dot to obtain the energy levels. We numerically investigate our results and show that the energy levels exhibit the symmetric and antisymmetric behaviors under suitable conditions of the physical parameters. We find that the radial probability can be symmetric or antisymmeric according to the angular momentum is null or no-null. Finally, we show that the application of an energy gap decreases the electron density in the quantum dot, which indicates a temporary trapping of electrons.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Derived data supporting the findings of this study are available from the corresponding author [Ahmed Jellal] on request.]

References

  1. K.S. Novoslov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.W. Tan, H.L. Strnmer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. G. Jo, M. Choe, C.Y. Cho, J.H. Kim, W. Park, S. Lee, W.K. Hong, T.W. Kim, S.J. Park, B.H. Honng, Y.H. Kahng, T. Lee, Nanotechnology 21, 175201 (2010)

    Article  ADS  Google Scholar 

  5. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  6. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  7. A.V. Rozhkov, G. Giavaras, Y.P. Bliokha, V. Freilikher, F. Nori, Phys. Rep. 503, 77 (2011)

    Article  ADS  Google Scholar 

  8. A. De Martino, L. DellAnna, R. Egger, Phys. Rev. Lett. 98, 066802 (2007)

    Article  ADS  Google Scholar 

  9. H.-Y. Chen, V. Apalkov, T. Chakraborty, Phys. Rev. Lett. 98, 186803 (2007)

    Article  ADS  Google Scholar 

  10. G. Giavaras, F. Nori, Appl. Phys. Lett. 97, 243106 (2010)

    Article  ADS  Google Scholar 

  11. G. Giavaras, F. Nori, Phys. Rev. B 83, 165427 (2011)

    Article  ADS  Google Scholar 

  12. G. Giavaras, F. Nori, Phys. Rev. B 85, 165446 (2012)

    Article  ADS  Google Scholar 

  13. Y.P. Bliokh, V. Freilikher, F. Nori, Phys. Rev. B 81, 075410 (2010)

    Article  ADS  Google Scholar 

  14. A.V. Rozhkov, F. Nori, Phys. Rev. B 81, 155401 (2010)

    Article  ADS  Google Scholar 

  15. M. Calvo, Phys. Rev. B 84, 235413 (2011)

    Article  ADS  Google Scholar 

  16. G. Giavaras, N. Lambert, F. Nori, Phys. Rev. B 87, 115416 (2013)

  17. G. Giavaras, F. Nori, Phys. Rev. B 94, 155419 (2016)

    Article  ADS  Google Scholar 

  18. S. Jung et al., Nat. Phys. 7, 245 (2011)

    Article  Google Scholar 

  19. J. Lee et al., Nat. Phys. 12, 1032 (2016)

    Article  Google Scholar 

  20. N.M. Freitag et al., Nano Lett. 16, 5798 (2016)

    Article  ADS  Google Scholar 

  21. N. Myoung, J. Ryu, H. Chul Park, S. Joo Lee, S. Woo, Phys. Rev. B 100, 045427 (2019)

    Article  ADS  Google Scholar 

  22. A. Belouad, B. Lemaalem, A. Jellal, H. Bahlouli, Mater. Res. Express 7, 015090 (2020)

    Article  ADS  Google Scholar 

  23. M. Mirzakhani, M. Zarenia, A. Ketabi, D.R. da Costa, F.M. Peeters, Phys. Rev. B 93, 165410 (2016)

  24. P. Recher, J. Nilsson, G. Burkard, B. Trauzettel, Phys. Rev. B 79, 085407 (2009)

    Article  ADS  Google Scholar 

  25. M. Zarenia, J. Milton Pereira, A. Chaves, F.M. Peeters, G.A. Farias, Phys. Rev. B 81, 045431 (2010)

    Article  ADS  Google Scholar 

  26. C. Schulz, R.L. Heinisch, H. Fehske, Quant. Matter 4, 346 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farsi, A., Belouad, A. & Jellal, A. Energy levels of magnetic quantum dots in gapped graphene. Eur. Phys. J. B 94, 9 (2021). https://doi.org/10.1140/epjb/s10051-020-00026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00026-2

Navigation