Skip to main content
Log in

Performance Evaluation of Negative Capacitance Junctionless FinFET under Extreme Length Scaling

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

CMOS scaling is the approach to accomplish the VLSI goals in the past decades. The existing CMOS technology is facing challenges related to short channel effects and reached to its performance limits at sub-10 nm technology nodes. The negative capacitance field-effect transistor is a potential device for near future technology to overcome these challenges. In the present work, negative capacitance Junctionless (NC-JL) FinFET with Metal-Ferroelectric–Insulator-Semiconductor (MFIS) structure is proposed and analysed comprehensively using TCAD simulation for its scaling capability over the various technology nodes starting from 24 nm to 5 nm. It is revealed that the integration of negative capacitance (NC) with JL FinFET helps to reduce the leakage current, short channel effects such as subthreshold slope, DIBL and provide high drive current as well as fast switching by reducing intrinsic delay for extremely short channel length as compared to standard-JL FinFET. Furthermore, the different performance parameters including Gate Induced Drain Leakage Current (GIDL) of proposed NC-JL FinFET are comprehensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Ieong M (2004) Silicon device scaling to the Sub-10-nm regime. Science 306:2057–2060. https://doi.org/10.1126/science.1100731

    Article  CAS  PubMed  Google Scholar 

  2. Chen S, Shang E, Hu S (2018) Gate length scaling optimization of FinFETs. Int J Mod Phys B 32:1850176. https://doi.org/10.1142/s021797921850176x

    Article  Google Scholar 

  3. Razavieh A, Zeitzoff P, Nowak EJ (2019) Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans Nanotechnol 18:999–1004. https://doi.org/10.1109/tnano.2019.2942456

    Article  CAS  Google Scholar 

  4. Colinge J-P, Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher A-M, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5:225–229. https://doi.org/10.1038/nnano.2010.15

    Article  CAS  PubMed  Google Scholar 

  5. Ionescu AM (2010) Nanowire transistors made easy. Nat Nanotechnol 5:178–179. https://doi.org/10.1038/nnano.2010.38

    Article  CAS  PubMed  Google Scholar 

  6. Kumar K, Raman A, Raj B, Singh S, Kumar N (2020) Design and optimization of junctionless-based devices with noise reduction for ultra-high frequency applications. Appl Phys A Mater Sci Process 126:1–11. https://doi.org/10.1007/s00339-020-04092-2

    Article  CAS  Google Scholar 

  7. Aggarwal A, Raman A, Kumar N, Singh S (2019) Nanocantilever tri-gate junctionless cuboidal nanowire-FET-based directional pressure sensor. Appl Phys A 125:125. https://doi.org/10.1007/s00339-019-2670-1

    Article  CAS  Google Scholar 

  8. Yu HY, Ren C, Yeo Y-C, Kang JF, Wang XP, Ma HHH, Li M-F, Chan DSH, Kwong D-L (2004) Fermi pinning-induced thermal instability of metal-gate work functions. IEEE Electron Device Lett 25:337–339. https://doi.org/10.1109/led.2004.827643

    Article  CAS  Google Scholar 

  9. Rathore RS, Rana AK (2017) Investigation of metal-gate work-function variability in FinFET structures and implications for SRAM cell design. Superlattice Microst 110:68–81. https://doi.org/10.1016/j.spmi.2017.09.003

    Article  CAS  Google Scholar 

  10. Salahuddin S, Datta S (2008) Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett 8:405–410. https://doi.org/10.1021/nl071804g

    Article  CAS  PubMed  Google Scholar 

  11. Khan AI, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul SR, Ramesh R, Salahuddin S (2014) Negative capacitance in a ferroelectric capacitor. Nature Mater 14:182–186. https://doi.org/10.1038/nmat4148

    Article  CAS  Google Scholar 

  12. Pahwa G, Agarwal A, Chauhan YS (2018) Numerical investigation of Short-Channel effects in negative capacitance MFIS and MFMIS transistors: subthreshold behavior. IEEE Trans Electron Devices 65:5130–5136. https://doi.org/10.1109/ted.2018.2870519

    Article  CAS  Google Scholar 

  13. Gupta AK, Raman A, Kumar N (2020) Charge-plasma-based negative capacitance ring-FET: design, investigation and reliability analysis. J Electron Mater 49:4852–4863. https://doi.org/10.1007/s11664-020-08205-8

    Article  CAS  Google Scholar 

  14. ITRS 2.0 (2013) International Technology Roadmap for Semiconductors. http://www.itrs2.net. Accessed Jul 2020

  15. Sentaurus TCAD Synopsys (2017) Synopsys. https://www.synopsys.com

  16. Choi S-J, Moon D-I, Kim S, Duarte JP, Choi Y-K (2011) Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett 32:125–127. https://doi.org/10.1109/led.2010.2093506

    Article  CAS  Google Scholar 

  17. Kaundal S, Rana AK (2018) Design and structural optimization of junctionless FinFET with Gaussian-doped channel. J Comput Electron 17:637–645. https://doi.org/10.1007/s10825-018-1131-y

    Article  CAS  Google Scholar 

  18. Jiang C, Liang R, Wang J, Xu J (2016) Simulation-based study of negative capacitance double-gate junctionless transistors with ferroelectric gate dielectric. Solid State Electron 126:130–135. https://doi.org/10.1016/j.sse.2016.09.001

    Article  CAS  Google Scholar 

  19. Li J, Li Y, Zhou N, Xiong W, Wang G, Zhang Q, Du A, Gao J, Kong Z, Lin H, Xiang J (2020) Study of silicon nitride inner spacer formation in process of gate-all-around nano-transistors. Nanomaterials 10:793. https://doi.org/10.3390/nano10040793

    Article  CAS  PubMed Central  Google Scholar 

  20. Koehler F, Triyoso DH, Hussain I, Antonioli B, Hempel K (2014) Challenges in spacer process development for leading-edge high-k metal gate technology. Phys Status Solidi (C) 11:73–76. https://doi.org/10.1002/pssc.201300157

    Article  CAS  Google Scholar 

  21. Mehta H, Kaur H (2018) Impact of Gaussian doping profile and negative capacitance effect on double-gate Junctionless transistors (DGJLTs). IEEE Trans Electron Devices 65:2699–2706. https://doi.org/10.1109/ted.2018.2832843

    Article  CAS  Google Scholar 

  22. Yang T, Hu J, Ni H (2019) Negative capacitance independent multi-gate FinFETs and their optimisations. Int J Electron 106:1229–1247. https://doi.org/10.1080/00207217.2019.1584918

    Article  CAS  Google Scholar 

  23. Iwai H (2009) Technology roadmap for 22nm and beyond. In: 2009 2nd international workshop on electron devices and semiconductor technology. IEEE https://doi.org/10.1109/ted.2020.2967463

  24. Kaundal S, Rana AK (2018) Physical insights on scaling of Gaussian channel design junctionless FinFET. J Nanoelectron Optoelectron 13:653–660. https://doi.org/10.1166/jno.2018.2301

    Article  CAS  Google Scholar 

  25. Amrouch H, Pahwa G, Gaidhane AD, Henkel J, Chauhan YS (2018) Negative capacitance transistor to address the fundamental limitations in technology scaling: processor performance. IEEE Access 6:52754–52765. https://doi.org/10.1109/access.2018.2870916

    Article  Google Scholar 

  26. Sahay S, Kumar MJ (2017) Physical insights into the nature of gate-induced drain leakage in Ultrashort Channel nanowire FETs. IEEE Trans Electron Devices 64:2604–2610. https://doi.org/10.1109/ted.2017.2688134

    Article  CAS  Google Scholar 

  27. Sahay S, Kumar MJ (2016) Insight into lateral band-to-band-tunneling in nanowire junctionless FETs. IEEE Trans Electron Devices 63:4138–4142. https://doi.org/10.1109/ted.2016.2601239

    Article  CAS  Google Scholar 

  28. Sahay S, Kumar MJ (2017) Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans Electron Devices 64:1330–1335. https://doi.org/10.1109/ted.2016.2645640

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Electronics and Communication Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India for providing valuable support to carry out this study in VLSI & Nano Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Design, Methodology, Formal analysis, and investigation, Validation, Writing - original draft preparation: [Shelja Kaushal]; Conceptualization, Resources, Supervision: [Ashwani K. Rana]; Writing - review and editing: [Rajneesh Sharma].

Corresponding author

Correspondence to Shelja Kaushal.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval and Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Code Availability

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, S., Rana, A.K. & Sharma, R. Performance Evaluation of Negative Capacitance Junctionless FinFET under Extreme Length Scaling. Silicon 13, 3681–3690 (2021). https://doi.org/10.1007/s12633-020-00931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00931-2

Keywords

Navigation