Skip to main content
Log in

Ultimate Bearing Capacity of Low-Density Volcanic Pyroclasts: Application to Shallow Foundations

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The present research focuses on the calculation of the bearing capacity of low-density volcanic Pyroclasts. First, the theoretical basis that define an adequate failure criterion for collapsible rocks based on the parameters that characterize them are developed here. Second, a mathematical characteristic lines method is proposed to resolve the ultimate load of shallow foundation rocks with collapsible failure criterion. This method leads to an analytical solution that differentiates two possible rupture mechanisms depending on the rock parameters and external confining load: (a) plastic failure wedge; (b) failure due to destructuring. The analytical solution is also represented in design abacuses to make it easy and quick. Finally, the proposed formulation is validated using numerical models by implementing the collapse criterion as a model defined by the user in a finite difference code. The result is a satisfactory comparison of bearing capacity values and the analytical rupture mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a, k :

Parameters dependent on the frictional parameter M of the collapse criterion curve

E :

Friction function

F :

Energy consumption function

\(f_{1}\),\(f_{2}\) :

Dimensionless distributed load on to boundary 1 and 2

I (ρ):

Engineering Riemann’s invariant

\(M\) :

Frictional parameter of the collapse criterion curve

\(M_{x}\), \(M_{y}\) :

Components of the mass forces

\(N_{\rm col}\) :

Bearing capacity factor of the collapse criterion curve

\(P_{\rm c}^{*}\) :

Isotropic compressive strength

\(P_{\rm co}^{*}\) :

Pressure module

P h :

Ultimate bearing capacity

\(p_{\rm cri}\) :

Destructuring limit pressure in canonical variables

\(p_{{\rm cri},{\rm T}}\) :

Tensile destructuring limit pressure in canonical variables

\(p_{{\rm cri},{\rm C}}\) :

Compression destructuring limit pressure in canonical variables

\(p_{\rm e}\) :

Load perpendicular to boundary 1 in physical variables

\(p_{{\rm e},{\rm cri}}\) :

Critical external pressure in physical variables

\(p_{\rm Kcri}\) :

Destructuring limit pressure in Cambridge variables

q, p :

Canonical Hill–Lambe stresses

\(q^{*}\), \(p^{*}\) :

Physical Hill–Lambe stresses

\(q_{\rm R}\), \(p_{\rm R}\) :

Dimensionless real Hill–Lambe stresses

\(q_{\rm R}^{*}\), \(p_{\rm R}^{*}\) :

Real Hill–Lambe stresses

\(q_{\rm K}\), \(p_{\rm K}\) :

Canonical Cambridge stresses

\(q_{\rm K}^{*}\), \(p_{\rm K}^{*}\) :

Physical Cambridge stresses

\(q_{\rm KR}\), \(p_{\rm KR}\) :

Dimensionless real Cambridge stresses

\(q_{\rm KR}^{*}\), \(p_{\rm KR}^{*}\) :

Real Cambridge stresses

r, θ :

Polar coordinates of a point of the characteristic line

R :

Energy consumption rate

\(R_{\rm c}\) :

Energy consumption rate due to cohesion

\(R_{\rm f}\) :

Energy consumption rate produced by friction

SC:

External load on boundary 1

\(t^{*}\) :

Isotropic tensile strength

\(W^{\rm p}\) :

Physical work in the plastic failure

x, y :

Cartesian coordinates of a point of the characteristic line

α :

Inclination with respect to the horizontal of the boundary 2

β :

Inclination with the horizontal of the unstructured wedge under the foundation

\(\dot{\gamma }^{\rm p}\) :

Angular distortion rate

\(\delta_{\rm o}\) :

Slope for the beginning of the collapse curve in Canonical Hill–Lambe stresses

\(\delta_{\rm f}\) :

Slope for the end of the collapse curve in Canonical Hill–Lambe stresses

\(\dot{\varepsilon }_{1}^{\rm p} ,\) \(\dot{\varepsilon }_{3}^{\rm p}\) :

Principal plastic strains rate

\(\zeta\) :

Tensile coefficient

\(\eta\) :

Obliquity

\(\lambda\) :

Mathematical adjustment parameter of the collapse criterion curve

\(\mu\) :

Angle between the direction of principal stress and the characteristic line

\(\dot{v}^{\rm p}\) :

Volumetric plastic strain rate

\(\chi\) :

Dilatancy

\(\Psi\) :

Inclination of the major principal stress with vertical axis

ρ :

Instantaneous friction angle

\(\rho_{1} , \rho_{2}\) :

Instantaneous friction angle in boundary 1 and 2

\(\rho_{1,{\rm cri}}\) :

Critical friction angle in boundary 1

\(\rho_{\rm o}\) :

Friction angle for the beginning of the collapse criterion curve

\(\rho_{\rm f}\) :

Friction angle for the end of the collapse criterion curve

\(\sigma_{1}\), \(\sigma_{3}\) :

Canonical principal stresses

\(\sigma_{1}^{*}\), \(\sigma_{3}^{*}\) :

Physical principal stresses

\(\sigma_{1{\rm R}}\), \(\sigma_{3{\rm R}}\) :

Dimensionless real principal stresses

\(\sigma_{1{\rm R}}^{*}\), \(\sigma_{3{\rm R}}^{*}\) :

Real principal stresses

\(\sigma_{{\text{c}}}\) :

Simple compressive strength

References

  • Adachi T, Ogawa T, Hayashi M (1981) Mechanical properties of soft rock and rock mass. In: Proceedings of the international conference on soil mechanics and foundation engineering, Stockholm, pp 527–530

  • American Association of State Highway and Transportation Officials (AASHTO) (1997) Standard specifications for highway bridges, Washington DC.

  • Amorosi A, Aversa S, Boldini D, Laera A, Nicotera MV (2015) Application of a new constitutive model to the analysis of plate load tests in a pyroclastic rock. Int J Rock Mech Min Sci 78:271–282

    Article  Google Scholar 

  • Aversa S, Evangelista A (1998) The mechanical behaviour of a pyroclastic rock: failure strength and “destruction” effects. Rock Mech Rock Eng 31:25–42

    Article  Google Scholar 

  • Aversa S, Evangelista A (1993) Some aspects of the mechanical behaviour of structured soils and soft rocks. In: Proceedings of international symposium on geotechnical engineering of hard soils and rocks, Athens, pp 359–366

  • Canadian Geotechnical Society (2006) Canadian foundation engineering manual, 4th edn. Bitech Publishers Ltd., Vancouver

    Google Scholar 

  • Cecconi M, Scarapazzi M (2010) Viggiani G (2010) On the geology and the geotechnical properties of pyroclastic flow deposits of the Colli Albani. Bull Eng Geol Environ 69:185–206

    Article  Google Scholar 

  • Cecconi M, Viggiani GM (2001) Structural features and mechanical behaviour of a pyroclastic weak rock. Int J Num Anal Methods Geomech 25:1525–1557

    Article  Google Scholar 

  • Cecconi M, Viggiani G (1998) Physical and structural properties of a pyroclastic soft rock. In: Proceedings of the 2nd international symposium on hard soils-soft rocks, Naples, pp 85–91

  • Conde M (2013) Caracterización geotécnica de materiales volcánicos de baja densidad, (Ph.D. Thesis). Universidad Complutense de Madrid, Madrid (In Spanish)

  • Corkum AG, Asiri Y, El Naggar H, Kinakin D (2018) The leeb hardness test for rock: an updated methodology and UCS correlation. Rock Mech Rock Eng 51:665–675

    Article  Google Scholar 

  • Drucker DC (1964) On the postulate of stability of material in the mechanics of continua. Mekhanika 3:235–249

    Google Scholar 

  • Drucker DC, Prager W, Greenberg HJ (1952) Extended limit design theorems for continuous media. Q Appl Math 9:381–389

    Article  Google Scholar 

  • Evangelista A, Aversa S (1994) Experimental evidence of non-lineal and creep behavior of pyroclastic rocks. In: Gioda G (ed) Cristescu ND. Springer-Wienn, New York, pp 55–101

    Google Scholar 

  • Galindo RA, Serrano A, Olalla C (2017) Ultimate bearing capacity of rock masses based on modified Mohr-Coulomb strength criterion. Int J Rock Mech Min Sci 93:215–225

    Article  Google Scholar 

  • Gonzalez de Vallejo LI, Hijazo T, Ferrer M (2008) Engineering geological properties of the volcanic rocks and soils of the Canary islands. Soils Rocks 31(1):3–13

    Google Scholar 

  • González de Vallejo LI, Hijazo T, Ferrer M, Seisdedos J (2006) Caracterización geomecánica de los materiales volcánicos de Tenerife. Instituto geológico y minero de España, Madrid (In Spanish)

    Google Scholar 

  • Government of the Canary Islands (2011) Guía para la planificación y realización de estudios geotécnicos para la edificación en la comunidad autónoma de Canarias. GET- CAN 011, Canarias (In Spanish).

  • Hoek E, Brown E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div (ASCE) 106(GT9):1013–1035

    Article  Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion—2002 Edition. In: Hammah R, Bawden W, Curran J, Telesnicki M (eds) Proceedings of NARMS-TAC 2002. Mining Innovation and Technology, Toronto pp 267–273

  • Itasca (1995) FLAC Version 7.0, User’s Manuals. Itasca Consulting Group, Minnesota, MN

  • Jin C, Yang C, Fang D, Xu S (2015) Study on the failure mechanism of basalts with columnar joints in the unloading process on the basis of an experimental cavity. Rock Mech Rock Eng 48:1275–1288

    Article  Google Scholar 

  • Justo JL, García-Núñez JC, Vázquez-Boza M, Justo E, Durand P, Azañón JM (2014) Design of Raft foundations for high-rise buildings on jointed rock. Rock Mech Rock Eng 47:1277–1290

    Article  Google Scholar 

  • Kong F, Shang J (2018) A validation study for the estimation of uniaxial compressive strength based on index tests. Rock Mech Rock Eng 51:2289–2297

    Article  Google Scholar 

  • Liu G, Lu W, Niu X, Wang G, Chen M, Yan P (2020) Excavation shaping and damage control technique for the Breccia Lava dam foundation at the Bai-he-tan hydropower station: a case study. Rock Mech Rock Eng 31:1889–1907

    Article  Google Scholar 

  • McDowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Geotechnique 48:667–679

    Article  Google Scholar 

  • Moon VG (1993) Geotechnical characteristics of ignimbrite: a soft pyroclastic rock type. Eng Geol 35(1–2):33–48

    Article  Google Scholar 

  • Pellegrino A (1970) Mechanical behaviour of soft rocks under high stresses. In: Proceedings of the 2nd international congress on rock mechanics, Belgrade, pp 173–180

  • Roscoe KH, Schofield AN, Thurairajah A (1963) Yielding of clays in states wetter than critical. Geotechnique 13(3):211–240

    Article  Google Scholar 

  • Santana M, De Santiago C, Perucho A, Serrano A (2008) Relación entre características químico-mineralógicas y propiedades geotécnicas de piroclastos canarios. In: Proceedings of the VII congreso geológico de España,. Las Palmas de Gran Canaria, pp 1567–5172 (In Spanish)

  • Savin GN (1961) Stress concentration around holes. Pergamon, New York

    Google Scholar 

  • Serrano A, Olalla C (1994) Ultimate bearing capacity of rock masses. Int J Rock Mech Min Sci 31:93–106

    Article  Google Scholar 

  • Serrano A, Olalla C (1998) Ultimate bearing capacity of an anisotropic rock mass. Part I: basic modes of failure. Int J Rock Mech Min Sci 35:301–324

    Article  Google Scholar 

  • Serrano A, Olalla C (1998) Ultimate bearing capacity of an anisotropic rock mass. Part II: determination procedure. Int J Rock Mech Min Sci 35:325–348

    Article  Google Scholar 

  • Serrano A, Olalla C, Gonzalez J (2000) Ultimate bearing capacity of rock masses based on the modified Hoek–Brown criterion. Int J Rock Mech Min Sci 37:1013–1018

    Article  Google Scholar 

  • Serrano A, Perucho A, Conde M (2016) Yield criterion for low-density volcanic pyroclasts. Int J Rock Mech Min 86:194–203

    Article  Google Scholar 

  • Serrano A (1976a) Aglomerados volcánicos en las Islas Canarias. In: Proceedings of Memoria del Simposio Nacional de Rocas Blandas, Madrid, pp 47–53 (In Spanish)

  • Serrano A (1976b) El sólido plástico, Separata Cap. IV. Geotecnia y Cimientos. Mecánica de Suelos y Rocas, Rueda, Madrid (In Spanish)

  • Serrano A, Olalla C (1998) Comportamiento de materiales volcánicos. In: Proceedings of the XII semana de la carretera, Canarias (In Spanish)

  • Serrano A, Olalla C, Perucho A (2002a) Mechanical collapsible rocks. In: Proceedings of the 1st workshop on volcanic rocks, Eurock, Funchal, pp 105–113

  • Serrano A, Olalla C, Perucho A (2002b) Evaluation of non-linear strength laws for volcanic agglomerates. In: Proceedings of the 1st workshop on volcanic rocks, Eurock, Funchal, pp 53–60

  • Serrano A, Perucho A, Olalla C, Estaire J (2007a) Foundations in volcanic areas. In: Proceedings of the XIV european conference on soil mechanics and geotechnical engineering, Madrid, pp 24–27.

  • Serrano A, Olalla C, Perucho A, Hernández L (2007b) Strength and deformability of low density pyroclasts. In: Proceedings of the ISRM international workshop on volcanic rocks, Ponta Delgada, pp 35–43

  • Singh M, Raj A, Singh B (2011) Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48:546–555

    Article  Google Scholar 

  • Singh M, Singh B (2012) Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks. Int J Rock Mech Min Sci 51:43–52

    Article  Google Scholar 

  • Sokolovskii VV (1960) Statics of soil media. Butterworth, London

    Google Scholar 

  • Teymen A (2020) The usability of Cerchar abrasivity index for the estimation of mechanical rock properties. Int J Rock Mech Min Sci 128:104258

    Article  Google Scholar 

  • Tommasi P, Ribacchi R (1998) Mechanical behaviour of the Orvieto tuff. In: Proceedings of the 2nd international Symposium on Hard Soils-Soft Rocks, Naples, pp 901–909

  • United States Corps of Engineers (USACE) (1996) Rock foundations. Technical engineering and design guides, Nº 16, ASCE, New York

  • Uriel S, Bravo B (1970) Brittle and plastic failure of rocks. In: Proceedings of the 2nd international congress on rock mechanics, Belgrade

  • Uriel S, Bravo B (1971) La rotura frágil y plástica en un aglomerado volcánico de las palmas de gran canaria. In: Proceedings of I Congreso hispano-luso-americano de geología económica, Madrid, 5th session (In Spanish)

  • Uriel S, Serrano A (1973) Geotechnical properties of two collapsible volcanic soils of low bulk density at the site of two dams in Canary Island Spain. In: Proceedings of the 8th congress ISSMFE, Moscow, pp 257–264

  • Wong PKK, Mitchell RJ (1975) Yielding and plastic flow of sensitive clay. Géotechnique 25:763–782

    Article  Google Scholar 

Download references

Acknowledgements

This research (Project: “Behavior study geomechanical of the pyroclasts low density canaries for your application on road works” 82-309-0-001-(IF)) was funded through the Canary Islands Government of Spain. The authors would like to thank State Research Center: CEDEX, who provided the field and laboratory tests and data of the work and allowed its publication. Finally, we would also like to thank Itasca Consultores S.L. for the technical assistance received in generating the numerical model in finite differences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Galindo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Theoretical bases of the failure criterion

Appendix: Theoretical bases of the failure criterion

The change in volumetric plastic deformation (\(\dot{v}^{\rm p}\)) and angular distortion (\(\dot{\gamma }^{\rm p}\)) can be expressed as a function of the major principal strain (\(\varepsilon_{1}\)) and minor principal strain (\(\varepsilon_{3}\)):

$$\dot{v}^{\rm p} = \dot{\varepsilon }_{1}^{\rm p} + 2\dot{\varepsilon }_{3}^{\rm p}$$
$$\dot{\gamma }^{\rm p} = \frac{2}{3}\left( {\dot{\varepsilon }_{1}^{\rm p} - \dot{\varepsilon }_{3}^{\rm p} } \right)$$

From the obliquity (\(\eta = q_{\rm KR} /p_{\rm KR}\)) and the dilatancy (\(\chi = \dot{v}^{\rm p} /\dot{\gamma }^{\rm p}\)) an energy consumption function (F) can be defined as the sum of both: \(F = \chi + \eta\), and the consumed physical work in the plastic failure (\(\dot{W}^{\rm p}\)) can be expressed by:

$$\dot{W}^{\rm p} = p_{\rm KR} \dot{v}^{\rm p} + q_{\rm KR} \dot{\gamma }^{\rm p} = \left( {\chi + \eta } \right)p_{\rm KR} \dot{\gamma }^{\rm p} = F p_{\rm KR} \dot{\gamma }^{\rm p}$$

And therefore, with R being the consumption rate: \(R = \dot{W}^{\rm p} /\dot{\gamma }^{p}\), results \(R = F p_{\rm KR}\).

Considering Drucker's stability postulate (1964):

$$\dot{p}_{\rm KR} \dot{v}^{\rm p} + \dot{q}_{\rm KR} \dot{\gamma }^{\rm p} \ge 0 \to \left( {\chi + \frac{{\dot{q}_{\rm KR} }}{{\dot{p}_{\rm KR} }}} \right) \ge 0$$

In a material with associated dilatancy the condition must be strictly verified, that is:

$$\chi + \frac{{\dot{q}_{\rm KR} }}{{\dot{p}_{\rm KR} }} = 0$$
(A1)

Since \(q_{\rm KR} = \eta p_{\rm KR}\), differentiating it will obtain:

$$\dot{q}_{\rm KR} = \eta \dot{p}_{\rm KR} + p_{\rm KR} \dot{\eta } \to \frac{{\dot{q}_{\rm KR} }}{{\dot{p}_{\rm KR} }} = \eta + p_{\rm KR} \frac{{\dot{\eta }}}{{\dot{p}_{\rm KR} }} \mathop \to \limits^{{{\text{Using}}~\left( 3 \right)}} \chi + \eta + p_{\rm KR} \frac{{\dot{\eta }}}{{\dot{p}_{\rm KR} }} = 0$$

Therefore:

$$F + p_{\rm KR} \frac{{\dot{\eta }}}{{\dot{p}_{\rm KR} }} = 0$$
(A2)

An energy consumption law is proposed, which is an extension of the Granta Gravel model by Roscoe et al. (1963) to cohesive materials. Following these ideas, the energy consumption at failure has two addends, one (\(R_{\rm f} = M p_{\rm KR}^{2}\)) produced by friction (where M is a frictional parameter) and the second (\(R_{\rm c} = q_{i}\)) due to cohesion. In this way, and since it was deduced that \(R = F p_{\rm KR}\), it is possible to obtain:

$$R = R_{\rm f} + R_{\rm c} = M p_{\rm KR}^{2} + q_{i} = F p_{\rm KR} \to F = M p_{\rm KR} + \frac{{q_{i} }}{{p_{\rm KR} }}$$
(A3)

From (A2) and (A3), the following differential equation is obtained:

$$p_{\rm KR} \frac{{\rm d}\eta }{{{\rm d}p_{\rm KR} }} + M p_{\rm KR} + \frac{{q_{i} }}{{p_{\rm KR} }} = 0 \to \frac{{\rm d}\eta }{{{\rm d}p_{\rm KR} }} = - \left( {M + \frac{{q_{i} }}{{ p_{\rm KR}^{2} }}} \right)$$

The solution of this differential equation is immediate, and the solution can now be a function of the constant \(C_{1}\), resulting in:

$$\eta = - M p_{\rm KR} + \frac{{q_{i} }}{{p_{\rm KR} }} + M C_{1} \to q_{\rm KR} = - M p_{\rm KR}^{2} + C_{1} M p_{\rm KR} + q_{i}$$
(A4)

Equation (A4) can be expressed in the previously defined physical canonical variables (\(p_{\rm KR} = p_{\rm K} - \zeta\), \(q_{\rm KR} = q_{\rm K}\)), so that:

$$q_{\rm K} = - M p_{\rm K}^{2} + M \left( {C_{1} + 2\zeta } \right)p_{\rm K} + \left( {q_{i} - M \zeta^{2} - M C_{1} \zeta } \right)$$
(A5)

Applying the known boundary condition (\(p_{\rm K} = 0\), \(q_{\rm K} = 0\)) in Eq. (A5), results into:

$$q_{i} = M\zeta \left( { \zeta + C_{1} } \right)$$
(A6)

And considering in (A5) the other boundary condition (\(p_{\rm K} = 1\), \(q_{\rm K} = 0\)), obtains:

$$- M + M\left( {C_{1} + 2\zeta } \right) + \left( {q_{i} - M \zeta^{2} - M C_{1} \zeta } \right) = 0\begin{array}{c}{{{\text{Using}} \left( 8 \right)}}\\ \rightarrow\end{array}\ C_{1} = 1 - 2\zeta$$
(A7)

Finally, substituting (A6) and (A7) in (A5) the collapse equation that complies with what is indicated in (2) for the most common case of λ = 1 is obtained:

$$q_{\rm K} = Mp_{\rm K} \left( { 1 - p_{\rm K} } \right)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, A., Galindo, R. & Perucho, Á. Ultimate Bearing Capacity of Low-Density Volcanic Pyroclasts: Application to Shallow Foundations. Rock Mech Rock Eng 54, 1647–1670 (2021). https://doi.org/10.1007/s00603-020-02341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02341-7

Keywords

Navigation