Skip to main content
Log in

Controllable Terahertz Switch Using Toroidal Dipolar Mode of a Metamaterial

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a controllable terahertz (THz) metamaterial switch by manipulating toroidal dipolar mode in simulation. The metamaterial switch consists of periodically patterned metallic split rings with photosensitive silicon stripes. The excitation of toroidal dipolar resonance is closely dependent on the transition between the dielectric and conductive phases of photosensitive silicon. The toroidal dipolar mode is exploited to modulate the ON/OFF-switching transmission of THz wave under wide incident angles. The operation mechanism and frequency tunability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rivas JG (2008) Terahertz: the art of confinement. Nat Photonics 2:137–138

    Article  Google Scholar 

  2. Wang ZL, Liu HJ, Huang N, Sun QB, Wen J (2012) Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides. Opt Express 20:8920–8928

    Article  CAS  Google Scholar 

  3. Cocker TL, Jelic V, Gupta M, Molesk SJ, Burgess JAJ, De Los Reyes G, Titova LV, Tsui YY, Freema MR, Hegmann FA (2013) An ultrafast terahertz scanning tunneling microscope. Nat Photonics 7:620–625

  4. Davies AG, Burnett AD, Fan W, Linfield EH, Cunningham JE (2008) Terahertz spectroscopy of explosives and drugs. Mater Today 11:18–26

    Article  Google Scholar 

  5. Manceau JM, Shen NH, Kafesaki M, Soukoulis CM, Tzortzakis S (2010) Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation. Appl Phys Lett 96:021111

    Article  Google Scholar 

  6. Zhang JN, Wang GC, Zhang B, He T, He YN, Shen JL (2016) Photo-excited broadband tunable terahertz metamaterial absorber. Opt Mater 54:32–36

    Article  CAS  Google Scholar 

  7. Liu Z, Huang CY, Liu HW, Zhang XH, Lee CK (2013) Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. Opt Express 21:6519–6525

    Article  CAS  Google Scholar 

  8. Chen HT, Yang H, Singh R, O’Hara JF, Azad AK, Trugman SA, Jia QX, Taylor AJ (2010) Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys Rev Lett 105:247402

    Article  Google Scholar 

  9. Hoque MNF, Karaoglan-Bebek G, Holtz M, Bernussi AA, Fan ZY (2015) High performance spatial light modulators for terahertz applications. Opt Commun 350:309–314

    Article  Google Scholar 

  10. Hu B, Wang QJ, Zhang Y (2012) Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons. Opt Lett 37:1895–1897

    Article  Google Scholar 

  11. Wang JQ, Liu SC, Guruswamy S, Nahata A (2014) Reconfigurable terahertz metamaterial device with pressure memory. Opt Express 22:4065–4074

    Article  CAS  Google Scholar 

  12. Cong JW, Zhou ZQ, Yao HB, Fu YH, Ren NF (2015) Reducing the pump power of optically controlled terahertz metamaterial via tailoring the resistance of the silicon gap region. J Opt 17:105108

    Article  Google Scholar 

  13. Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96:107401

    Article  CAS  Google Scholar 

  14. Gu JQ, Singh R, Liu XJ, Zhang XQ, Ma YF, Zhang S, Maier SA, Tian Z, Azad AK, Chen H-T (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  Google Scholar 

  15. Shen XP, Cui TJ (2012) Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber. J Opt 14:114012

    Article  Google Scholar 

  16. Liu XW, Liu HJ, Sun QB, Huang N (2015) Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon. Appl Opt 54:3478–3483

    Article  CAS  Google Scholar 

  17. Wang GC, Zhang JN, Zhang B, He T, He YN, Shen JL (2016) Photo-excited terahertz switch based on composite metamaterial structure. Opt Commun 374:64–68

    Article  CAS  Google Scholar 

  18. Kaelberer T, Fedotov VA, Papasimakis N, Tsai DP, Zheludev NI (2010) Toroidal dipolar response in a metamaterial. Sci 330:1510–1512

    Article  CAS  Google Scholar 

  19. Dong ZG, Ni PG, Zhu J, Yin XB, Zhang X (2012) Toroidal dipole response in a multifold double-ring metamaterial. Opt Express 20:13065–13070

    Article  Google Scholar 

  20. Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15:263–271

    Article  CAS  Google Scholar 

  21. Cojocari MV, Schegoleva KI, Basharin AA (2017) Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution. Opt Lett 42:1700–1703

    Article  CAS  Google Scholar 

  22. Song ZY, Deng YD, Zhou YG, Liu ZY (2019) Terahertz toroidal metamaterial with tunable properties. Opt Express 27:5792–5797

    Article  CAS  Google Scholar 

  23. Gerislioglu B, Ahmadivand A, Pala N (2018) Tunable plasmonic toroidal terahertz metamodulator. Phys Rev B 97:161405

    Article  CAS  Google Scholar 

  24. Chen X, Fan WH (2017) Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance. Opt Lett 42:2034–2037

    Article  CAS  Google Scholar 

  25. Ding F, Wang ZX, He SL, Shalaev VM, Kildishev AV (2015) Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9:4111–4119

    Article  CAS  Google Scholar 

  26. Sajadi M, Wolf M, Kampfrath T (2015) Terahertz-field-induced optical birefringence in common window and substrate materials. Opt Express 23:28985–28992

    Article  CAS  Google Scholar 

  27. Zhang YP, Li TT, Zeng BB, Zhang HY, Lv HH, Huang XY, Zhang WL, Azad AK (2015) A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 7:12682–12688

    Article  CAS  Google Scholar 

  28. Alzar CLG, Martinez MAG, Nussenzveig P (2002) Classical analog of electromagnetically induced transparency. Am J Phys 70:37–41

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Natural Science Foundation of Heilongjiang Province (LH2019F012); Fundamental Research Funds for the Central Universities to Harbin Engineering University (3072020CF2516); 111 Project of Harbin Engineering University (B13015).

Funding

The work was supported by Natural Science Foundation of Heilongjiang Province (LH2019F012); Fundamental Research Funds for the Central Universities to Harbin Engineering University (3072020CF2516); 111 Project of Harbin Engineering University (B13015).

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding authors

Correspondence to Ruoxing Wang or Li Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Informed consent was obtained from all authors.

Consent to Publish

The authors confirm that there is informed consent to the publication of the data contained in the article. We confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Chen, C., Yan, F. et al. Controllable Terahertz Switch Using Toroidal Dipolar Mode of a Metamaterial. Plasmonics 16, 933–938 (2021). https://doi.org/10.1007/s11468-020-01359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01359-5

Keywords

Navigation