Skip to main content
Log in

The influence of fitness landscape characteristics on particle swarm optimisers

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In the growing field of swarm-based metaheuristics, it is widely agreed that the behaviour of an algorithm, in terms of a good balance of exploration and exploitation, plays an important part in its success. Despite this, the influence that the characteristics of an optimisation problem may have on the behaviour of an algorithm is largely ignored. The characteristics of an optimisation problem can be intuitively understood and quantified in terms of fitness landscapes characteristics (FLCs). Similarly, the behaviour of a swarm-based algorithm can be quantified in terms of its diversity rate-of-change (DRoC). This study investigates correlations between the FLCs of optimisation problems and the DRoCs of particle swarm optimisers. The result is a collection of findings about links between particular problem characteristics and algorithm behaviour. The approach followed in this study may also be used as a template for further studies that broaden the scope of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arani BO, Mirzabeygi P, Panahi MS (2013) An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance. Swarm Evolut Comput 11:1–15

    Article  Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3):268–308

    Article  Google Scholar 

  • Bosman P, Engelbrecht AP (2014) Diversity rate of change measurement for particle swarm optimisers. In: Solnon C, Stützle T, Dorigo M, Birttari M, Garnier S, Hamann H, Montes de Oca M (eds) Swarm intelligence. Springer International Publishing, Cham, pp 86–97

    Chapter  Google Scholar 

  • Chen X, Li Y (2007) A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Trans Syst Man Cybern Part B (Cybernetics) 37(5):1271–1289

    Article  Google Scholar 

  • Dan Den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer. Proc IEEE Int Conf Syst Man Cybern 3:94–99

    Google Scholar 

  • De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems. PhD thesis, Computer and Communication Sciences, University of Michigan, Ann Arbor

  • Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. Proc IEEE Congr Evolut Comput 2:1470–1477

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. pp 39–43, https://doi.org/10.1109/MHS.1995.494215

  • Engelbrecht AP (2013) Particle swarm optimization: global best or local best? In: Proceedings of the BRICS congress on computational intelligence, pp 124–135

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  Google Scholar 

  • García-Gonzalo E, Fernández-Martínez J (2012) A brief historical review of particle swarm optimization PSO. J Bioinf Intell Control 1(1):3–16. https://doi.org/10.1166/jbic.2012.1002

    Article  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  Google Scholar 

  • Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Proceedings of the international conference on parallel problem solving from nature, Springer, pp 282–291

  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Book  Google Scholar 

  • Jones T, Forrest S (1995) Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the sixth international conference on genetic algorithms, Morgan Kaufmann, pp 184–192

  • Jordehi AR (2015) Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  • Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE international conference on evolutionary computation, pp 303–308, https://doi.org/10.1109/ICEC.1997.592326

  • Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the IEEE swarm intelligence symposium, pp 80–87 https://doi.org/10.1109/SIS.2003.1202251

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, 4:1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  • Kennedy J, Mendes R (2002) Population structure and particle swarm performance. Proc Congr Evolut Comput 2:1671–1676. https://doi.org/10.1109/CEC.2002.1004493

    Article  Google Scholar 

  • Khachaturyan A, Semenovskaya S, Vainstein B (1979) A statistical-thermodynamic approach to determination of structure amplitude phases. Sov Phys Crystallogr 24(5):519–524

    MathSciNet  Google Scholar 

  • Krishnanand K, Ghose D (2009) Glowworm swarm optimisation: a new method for optimising multi-modal functions. Int J Comput Intell Stud 1(1):93–119

    Article  Google Scholar 

  • Lunacek M, Whitley D (2006) The dispersion metric and the CMA evolution strategy. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, ACM, New York, USA. pp 477–484, https://doi.org/10.1145/1143997.1144085

  • Malan KM (2014) Characterising continuous optimisation problems for particle swarm optimisation performance prediction. Ph.D. thesis, University of Pretoria

  • Malan KM, Engelbrecht AP (2009) Quantifying ruggedness of continuous landscapes using entropy. In: Proceedings of the IEEE congress on evolutionary computation, IEEE, pp 1440–1447

  • Malan KM, Engelbrecht AP (2013) Ruggedness, funnels and gradients in fitness landscapes and the effect on PSO performance. In: Proceedings of the IEEE congress on evolutionary computation, IEEE, pp 963–970

  • Malan KM, Engelbrecht AP (2014a) Characterising the searchability of continuous optimisation problems for PSO. Swarm Intell 8(4):275–302

    Article  Google Scholar 

  • Malan KM, Engelbrecht AP (2014) A progressive random walk algorithm for sampling continuous fitness landscapes. In: Proceedings of the IEEE congress on evolutionary computation, pp 2507–2514

  • Malik RF, Rahman TA, Hashim SZM, Ngah R (2007) New particle swarm optimizer with sigmoid increasing inertia weight. Int J Comput Sci Secur 1(2):35–44

    Google Scholar 

  • Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-inspired optimisation algorithm: bird swarm algorithm. J Exp Theor Artif Intell 28(4):673–687

    Article  Google Scholar 

  • Mersmann O, Bischl B, Trautmann H, Preuss M, Weihs C, Rudolph G (2011) Exploratory landscape analysis. In: Proceedings of the 13th annual conference on genetic and evolutionary computation, ACM, pp 829–836

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mishra SK (2006a) Performance of repulsive particle swarm method in global optimization of some important test functions: A fortran program. Tech. rep, Social Science Research Network

  • Mishra SK (2006) Some new test functions for global optimization and performance of repulsive particle swarm method. Tech. Rep. 2718, University Library of Munich, Germany

  • Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelligence: a survey. Int J Bio-Inspir Comput 3(1):1–16

    Article  Google Scholar 

  • Peer ES, Van Den Bergh F, Engelbrecht AP (2003) Using neighbourhoods with the guaranteed convergence PSO. In: Proceedings of the IEEE swarm intelligence symposium, IEEE, pp 235–242

  • Price KV, Storn RM, Lampinen JA (2005) Unconstrained unimodal test functions. Differential evolution a practical approach to global optimization. Springer-Verlag, Berlin, pp 514–533

    MATH  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MM (2007) A novel population initialization method for accelerating evolutionary algorithms. Comput Math Appl 53(10):1605–1614

    Article  MathSciNet  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101

    Article  Google Scholar 

  • Van Aardt WA, Bosman AS, Malan KM (2017) Characterising neutrality in neural network error landscapes. In: Proceedings of the IEEE congress on evolutionary computation, IEEE, pp 1374–1381

  • Van Den Bergh F (2001) An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria South Africa

  • Van Den Bergh F, Engelbrecht AP (2010) A convergence proof for the particle swarm optimiser. Fundamenta Informaticae 105(4):341–374

    Article  MathSciNet  Google Scholar 

  • Vassilev VK, Fogarty TC, Miller JF (2003) Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application. Advances in evolutionary computing. Springer, Berlin, pp 3–44

    Chapter  Google Scholar 

  • Verel S, Collard P, Clergue M (2003) Where are bottlenecks in NK fitness landscapes? Proc IEEE Congr Evolut Comput 1:273–280

    Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the sixth international congress on genetics, pp 356–366

  • Yang XS (2009) Firefly algorithms for multimodal optimization. In: Proceedings of the international symposium on stochastic algorithms, Springer, pp 169–178

  • Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, UK

    Google Scholar 

  • Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization. Springer, Berlin, pp 65–74

    Chapter  Google Scholar 

  • Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of the world congress on nature & biologically inspired computing, IEEE, pp 210–214

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(2):82–102

    Article  Google Scholar 

  • Zhang L, Yu H, Hu S (2003) A new approach to improve particle swarm optimization. In: Proceedings of the genetic and evolutionary computation conference, Springer, pp 134–139

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Engelbrecht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelbrecht, A.P., Bosman, P. & Malan, K.M. The influence of fitness landscape characteristics on particle swarm optimisers. Nat Comput 21, 335–345 (2022). https://doi.org/10.1007/s11047-020-09835-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-020-09835-x

Keywords

Navigation