Skip to main content

Advertisement

Log in

Design and control of a novel electromagnetic actuated 3-DoFs micropositioner

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, a novel electromagnetic micropositioner is designed from an orthogonal 3-P(4S) parallel mechanism through the substitution method and modular design techniques. Preliminary prototype experiments show that the micropositioner possesses an excellent decoupling performance. Thus an independent control strategy is carried out for the motion control of the micropositioner. An RBF neural networks based adaptive backstepping terminal sliding mode controller is designed according to the nonlinearity characteristics of the actuator. Parameters of the system are identified with a genetic algorithm. Finally, the performances of the micropositioner and the developed control strategy are verified. Experimental results demonstrate that satisfactory performances can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen M, Wu QX, Cui RX (2013) Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans 52(2):198–206

    Article  Google Scholar 

  • Clark L, Shirinzadeh B, Tian Y, Yao B (2016) Development of a passive compliant mechanism for measurement of micro/nanoscale planar 3-DOF motions. IEEE/ASME Trans Mechatron 21(3):1222–1232

    Article  Google Scholar 

  • Dan W, Rui F (2016) Design and nonlinear analysis of a 6-DOF compliant parallel manipulator with spatial beam flexure hinges. Precision Eng 45:365–373

    Article  Google Scholar 

  • Ding BX, Yang ZX, Li YM (2020) Design of flexure-based modular architecture micro-positioning stage. Microsyst Technol 26(4):2893–2901

    Article  Google Scholar 

  • Du Z, Shi R, Dong W (2014) A piezo-actuated high-precision flexible parallel pointing mechanism: conceptual design, development, and experiments. IEEE Trans Rob 30(1):131–137

    Article  Google Scholar 

  • Hajhashemi MS, Barazandeh F, Nazari Nejad S, Nadafi DBR (2011) Design and microfabrication of a constant-force microgripper. Proc Inst Mech Eng Part C 225(11):2739–2748

    Article  Google Scholar 

  • Joo T, Yang GL, Chen IM (2015) Compliant manipulators. Handbook of manufacturing engineering and technology. Springer-Verlag London Ltd, London, pp 2229–2300

    Google Scholar 

  • Kenton BJ, Leang KK (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369

    Article  Google Scholar 

  • Kozuka H, Arata J, Okuda K, Onaga A, Ohno M, Sano A, Fujimoto H (2012) A bio-inspired compliant parallel mechanism for high-precision robots. In: IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, pp 3122–3127

  • Li CX, Gu GY, Yang MJ, Zhu LM (2013) Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Rev Sci Instrum 84(12):125111.1–13

    Google Scholar 

  • Li T, Shi C, Ren H (2018) A high-sensitivity tactile sensor array based on fiber bragg grating sensing for tissue palpation in minimally invasive surgery. IEEE/ASME Trans Mechatron 23(5):2306–2315

    Article  Google Scholar 

  • Li CS, Gu X, Xiao X, Lim CM, Ren H (2019a) Flexible robot with variable stiffness in transoral surgery. IEEE/ASME Trans Mechatron 25(1):1–10 

    Article  Google Scholar 

  • Li JP, Huang H, Morita T (2019b) Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review. Sens Actuat A 292:39–51

    Article  Google Scholar 

  • Lin C, Zheng S, Li P, Shen Z, Wang S (2019) Positioning error analysis and control of a piezo-driven 6-DOF micro-positioner. Micromachines (Basel) 10(8):542.1–20

    Google Scholar 

  • Ling MX, Cao JY, Li QS, Zhuang J (2018) Design, pseudostatic model, and PVDF-based motion sensing of a piezo-actuated XYZ flexure manipulator. IEEE/ASME Trans Mechatron 23(6):2837–2848

    Article  Google Scholar 

  • Liu J, Gong Z, Tang K, Lu Z, Ru C, Luo J, Xie S, Sun Y (2014) Locating end-effector tips in robotic micromanipulation. IEEE Trans Rob 30(1):125–130

    Article  Google Scholar 

  • Man Z, Yu XH (1996) Terminal sliding mode control of MIMO linear systems. In: Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Japan, pp 4619–4624

  • Mayyas M, Mamidala I (2020) Prosthetic finger based on fully compliant mechanism for multi-scale grasping. Microsyst Technol. https://doi.org/10.1007/s00542-020-05045-8

    Article  Google Scholar 

  • Nguyen DN, Ho NL, Dao TP, Le Chau N (2019) Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsyst Technol 25(10):3991–4009

    Article  Google Scholar 

  • Pinskier J, Shirinzadeh B, Clark L, Qin YD (2018) Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism. Mechatronics 50:55–68

    Article  Google Scholar 

  • Wang F, Shi B, Tian Y, Huo Z, Zhao X, Zhang D (2019) Design of a novel dual-axis micromanipulator with an asymmetric compliant structure. IEEE/ASME Trans Mechatron 24(2):656–665

    Article  Google Scholar 

  • Xiao X, Li YM (2016) Development of an electromagnetic actuated microdisplacement module. IEEE/ASME Trans Mechatron 21(3):1252–1261

    Article  Google Scholar 

  • Xiao X, Li YM (2017) Development and visual servo control of an electromagnetic actuated micromanipulation system. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, pp 326–331

  • Xiao X, Li YM, Xiao SL (2017) Development of a novel large stroke 2-DOF micromanipulator for micro/nano manipulation. Microsyst Technol 23(7):2993–3003

    Article  Google Scholar 

  • Yang M, Zhang C, Yang GL, Dong W (2019) Optimal design and tracking control of a superelastic flexure hinge based 3-PRR compliant parallel manipulator. IEEE Access 7:174236–174247

    Article  Google Scholar 

  • Zhu Z, To S, Zhu WL, Li YM, Huang P (2018) Optimum design of a piezo-actuated triaxial compliant mechanism for nanocutting. IEEE Trans Industr Electron 65(8):6362–6371

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key R&D program of China with Grant No. 2019YFB1312400, National Natural Science Foundation of China (51575544), Hong Kong RGC TRS grant T42-409/18-R, Huxiang High Level Talent Project of Hunan Province (2019RS1066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangmin Li or Max. Q.-H. Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Xi, R., Li, Y. et al. Design and control of a novel electromagnetic actuated 3-DoFs micropositioner. Microsyst Technol 27, 3763–3772 (2021). https://doi.org/10.1007/s00542-020-05163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05163-3

Navigation