Skip to main content
Log in

Phonon confinement and size effect in Raman spectra of TiO2 nanocrystal towards Photocatalysis Application

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The detailed micro-Raman study of pure TiO2 and Si-doped TiO2 thin film was synthesized by facile dip-coating technique for photocatalytic application, to degrade the organic species in polluted surface water due to the recent environmental crisis by dye industries. The prepared pure TiO2 and Si-doped TiO2 thin film were annealed at various temperatures 300 °C and 450 °C. Micro-Raman spectrum of TiO2 nanostructure confirms the presence of anatase phase. The crystallinity of TiO2 and uniformity of the film were improved in annealing temperature of 450 °C. The particle size of TiO2 was calculated on the basis of the phonon confinement model with the theoretical phonon dispersion relation. The phonon confinement effect depends upon the blue shift and broadening of the lower-frequency Eg Raman mode of TiO2. Also, the compressive stress of TiO2 was evaluated using a suitable formula. In addition, the dye degradation activity under visible light irradiation process using methylene blue (MB) was analyzed to check the ability of photocatalytic activity of prepared samples, in which, the fast MB degradation kinetics achieved by Si-TiO2 nanocrystal and it degrades 99% of MB within 60 min. Also, it exhibits more than 90% photodegradation efficiency up to ten recycle than pristine. Moreover, the possible photocatalytic mechanism of the prepared system was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh, N., Prakash, J., Gupta, R.K.: Design and engineering of high performance photocatalytic system based on metal oxide graphene-noble metal nanocomposites. Mol Syst Des Eng. 2, 422–439 (2017)

    Article  CAS  Google Scholar 

  2. Dhananjay, S., Bhatkhande, V.G., Pangarkar, A.C.M., Beenackers, A.: Photocatalytic degradation for environmental applications. JChem Technol Biotechnol. 77, 102–116 (2001)

    Google Scholar 

  3. Daghrir, R., Droguia, P., Robert, D.: Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A. 238, 41–52 (2012)

    Article  CAS  Google Scholar 

  4. Hao, C., Yang, Y., Shen, Y., Feng, F., Wang, X., Zhao, Y., Ge, C.: Liquid phase-based ultrasonic-assisted synthesis of G–ZnO nanocomposites and its sunlight photocatalytic activity. Mater Des. 89, 864–871 (2016)

    Article  CAS  Google Scholar 

  5. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R., Hashib, M.A.: Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination. 261, 3–18 (2013)

    Article  Google Scholar 

  6. Xu, C.Y., Zhang, P.X., Yan, L.: Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc. 32, 862–865 (2001)

    Article  CAS  Google Scholar 

  7. Xue, X., Ji, W., Mao, Z., Mao, H., Wang, Y., Wang, X., Ruan, W., Zhao, B., Lombardi, J.R.: Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J Phys Chem C. 116, 8792–8797 (2012)

    Article  CAS  Google Scholar 

  8. Gupta, S.K., Desai, R., Jha, P.K., Sahoo, S., Kirin, D.: Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J Raman Spectrosc. 41, 350–355 (2010)

    CAS  Google Scholar 

  9. Bersani, D., Antonioli, G., Lottici, P.P., Lopez, T.: Raman study of nanosized titania prepared by sol-gel route. J Non-Cryst Solids. 232-234, 175–181 (1998)

    Article  CAS  Google Scholar 

  10. Bersani, D., Lottici, P.P., Ding, X.-Z.: Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett. 72, 73–75 (1998)

    Article  CAS  Google Scholar 

  11. Ricci, P.C., Salis, M., Anedda, A.: Phonon characterization of nanocrystals by Raman spectroscopy. Chem Phys Lett. 457, 191–193 (2008)

    Article  CAS  Google Scholar 

  12. Nair, P.B., JustinVictor, V.B., Daniel, G.P., Joy, K., Ramakrishnan, V., Thomas, P.V.: Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Appl Surf Sci. (2011). https://doi.org/10.1016/j.apsusc.2011.07.125

  13. Mikami, M., Nakamura, S., Kitaoand, O., Arakawa, H.: Lattice dynamics and dielectric properties of TiO2 anatase: a first principles-study. Phys Rev B. 66, 155213 (2002) [1–6]

    Article  Google Scholar 

  14. Gonzalez, R.J., Zallen, R.: Infrared reflectivity and lattice fundamentals in anatase TiO2. Phys Rev B. 55, 7014–7017 (1997)

    Article  CAS  Google Scholar 

  15. Sahoo, S., Arora, A.K., Sridharan, V.: Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystal. J Phys Chem C. 113, 16927–16933 (2009)

    Article  CAS  Google Scholar 

  16. Long, H., Chen, A., Yang, G., Li, Y., Lu, P.: Third order optical nonlinearities in anatase and rutile TiO2 thin films. Thin Solid Films. 517, 5601–5604 (2009)

    Article  CAS  Google Scholar 

  17. Indrea, E., Suciu, R.C., Rosu, M.C., Silipas, T.D.: Rietveld analysis of nanocrystalline titania prepared by sol-gel method. Rev Roun Chim. 56, 613–618 (2011)

    CAS  Google Scholar 

  18. Zhu, K.R., Zhang, M., Chen, Q., Yin, Z.: Size and phonon-confinement effects on low frequency Raman mode of anatase TiO2. Phys Lett A. 340, 220–227 (2005)

    Article  CAS  Google Scholar 

  19. Karunagaran, B., Kim, K., Mangalaraj, D., Yi, J., Velumani, S.: Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films. Sol Energy Mater Sol Cells. 88, 199–208 (2005)

    Article  CAS  Google Scholar 

  20. Ma, W., Lu, Z., Zhang, M.: Investigations of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl Phys A Mater. 66, 621–627 (1998)

    Article  CAS  Google Scholar 

  21. Balaji, S., Djaoued, Y., Robichaud, J.: Phonon confinement studies in nanocrystalline anatase-TiO2 thin film by micro-Raman spectroscopy. J Raman Spectrosc. 37, 1416–1422 (2006)

    Article  CAS  Google Scholar 

  22. Ivanda, M., Music, S., Gotic, M., Turkovic, A., Tonej, A.M., Gamulin, O.: The effects of crystal size on the Raman spectra of nanophase TiO2. J Mole Struct. 480-481, 641–644 (1999)

    Article  CAS  Google Scholar 

  23. Georgescu, D., Baia, L., Ersen, O., Baia, M., Simon, S.: Experimental assesment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy. J Raman Spectrosc. 10(1002), (2011)

  24. Richter, H., Wang, Z.P., Ley, L.: The one phonon Raman spectrum in micro-crystalline silicon. Solid State Comm. 39, 625–629 (1981)

    Article  CAS  Google Scholar 

  25. Campbell, I.H., Fachet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986)

    Article  CAS  Google Scholar 

  26. Scepanovic, M.J., Grujic-Brojuin, M., Dohcevic-Mitrovic, Z.D., Popovic, Z.V.: Temperature dependence of the lowest frequency Eg Raman mode in laser- synthesized anatase TiO2 nanopowder. Appl Phys A Mater. 86, 365–371 (2007)

    Article  CAS  Google Scholar 

  27. Choi, H.C., Jung, Y.M., Kim, S.B.: Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc. 37, 33–38 (2005)

    Article  CAS  Google Scholar 

  28. Temple, P.A., Hathaway, C.E.: Multiphonon Raman spectrum of silicon. Phys Rev B. 7, 3685–3697 (1973)

    Article  CAS  Google Scholar 

  29. Alhomoudi, I.A., Newaz, G.: Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films. 517, 4372–4378 (2009)

    Article  CAS  Google Scholar 

  30. Gaya, U.I., Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C. 9, 1–12 (2008)

    Article  CAS  Google Scholar 

  31. Daghrir, R., Drogui, P., Robert, D.: Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res. 52, 3581–3599 (2013)

    Article  CAS  Google Scholar 

  32. Akpan, U.G., Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts. J HazardMater. 170, 520–529 (2009)

    Article  CAS  Google Scholar 

  33. Reza, K.M., Kurny, A.S.W., Gulshan, F.: Parameters affecting the photocatalytic degradation of dyes using TiO2. Appl Water Sci. 7, 1569–1578 (2017)

    Article  CAS  Google Scholar 

  34. Rauf, M.A., Salman Ashraf, S.: Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J. 151, 10–18 (2009)

    Article  CAS  Google Scholar 

  35. Sarkar, S., Bhattacharjee, C., Curcio, S.: Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste. Ecotoxicol Environ Saf. 121, 154–163 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (VR) and (CS) are thankful to UGC, Government of India for providing micro Raman facility under UPE program and (PS) is thankful to UGC for the award of research fellowship under UPE program. The author, S. Jayapandi, acknowledges UGC for providing Non-NET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sangeetha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha, P., Jayapandi, S., Saranya, C. et al. Phonon confinement and size effect in Raman spectra of TiO2 nanocrystal towards Photocatalysis Application. J Aust Ceram Soc 57, 533–541 (2021). https://doi.org/10.1007/s41779-020-00555-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00555-0

Keywords

Navigation