Skip to main content

Advertisement

Log in

Particle Size Reduction Techniques of Pharmaceutical Compounds for the Enhancement of Their Dissolution Rate and Bioavailability

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

In pharmaceutical research and development, various new chemical entities (NCE) are found to be poorly water-soluble. Therefore, solubility enhancement, a key factor for higher bioavailability, is a major challenge in pharmaceutical industries. Particle size reduction is one such method that increases the surface area of the pharmaceutical compounds and subsequently leads to a higher dissolution rate and bioavailability. Conventional processes such as milling, high-pressure homogenization, and spray drying are well established and widely used for particle size reduction. However, a few disadvantages such as a broader particle size distribution (PSD) and thermal and chemical degradation of the product are major concerns for the product quality. Non-conventional processes such as liquid anti-solvent crystallization, supercritical anti-solvent process, rapid expansion of supercritical solutions, particles from gas saturated solutions, and pulsed laser ablation are emerging as potential alternatives to overcome the disadvantages of conventional processes. This review critically summarizes the milling, spray drying, high-pressure homogenization, liquid anti-solvent crystallization, spray freeze-drying, supercritical carbon dioxide \((\mathrm{SC C}{\mathrm{O}}_{2})\)–based micronization processes, pulsed laser ablation and combinative techniques. The success of these processes in enhancing the dissolution rate and bioavailability of many active pharmaceutical ingredients (APIs) has been critically examined. The advantages and limitations of these processes are also discussed. Finally, opportunities for future research are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar D, Worku ZA, Gao Y, Kamaraju VK, Glennon B, Babu RP, et al. Comparison of wet milling and dry milling routes for ibuprofen pharmaceutical crystals and their impact on pharmaceutical and biopharmaceutical properties. Powder Technol. 2018;330:228–38.

    Article  CAS  Google Scholar 

  2. Majerik V, Charbit G, Badens E, Horváth G, Szokonya L, Bosc N, et al. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. J Supercrit Fluids. 2007;40(1):101–10.

    Article  CAS  Google Scholar 

  3. Abuzar SM, Hyun SM, Kim JH, Park HJ, Kim MS, Park JS, et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharmaceut. 2018;538(1–2):1–13.

    Article  CAS  Google Scholar 

  4. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  5. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharmaceut. 2004;1(1):85–96.

    Article  CAS  Google Scholar 

  6. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliver Rev. 2007;59:603–16.

    Article  CAS  Google Scholar 

  7. Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci. 2014;10(4):255–74.

    Article  Google Scholar 

  8. Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm. 2020;22(42):6958–74.

    Article  CAS  Google Scholar 

  9. Chavan DU, Marques SM, Bhide PJ, Kumar L, Shirodkar RK. Rapidly dissolving felodipine nanoparticle strips - formulation using design of experiment and characterization. J Drug Deliver Sci Tec. 2020;60:102053.

    Article  CAS  Google Scholar 

  10. Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharmaceut. 2020:119560.

  11. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  12. Singh SY, Verma R, Kumar L. Porous oral drug delivery system: tablets. Pharm Chem J. 2018;52(6):553–61.

    Article  CAS  Google Scholar 

  13. Singh SY, Salwa, Shirodkar RK, Verma R, Kumar L. Enhancement in dissolution rate of atorvastatin trihydrate calcium by formulating its porous tablet using sublimation technique. J Pharm Innov. 2019: 1–23.

  14. Shi X, Song S, Ding Z, Fan B, Huang W, Xu T. Improving the solubility, dissolution, and bioavailability of ibrutinib by preparing it in a coamorphous state with saccharin. J Pharm Sci. 2019;108(9):3020–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shirodkar RK, Kumar L, Mutalik S, Lewis S. Solid lipid nanoparticles and nanostructured lipid carriers: emerging lipid based drug delivery systems. Pharm Chem J. 2019;53(5):440–53.

    Article  CAS  Google Scholar 

  16. Vladisavljević GT. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colliod Surface A. 2019:123709.

  17. Harmalkar D, Godinho S, Bhide PJ, Kumar L, Shirodkar RK. New formulation technique for solubility and dissolution rate enhancement of poorly soluble drugs. Pharm Chem J. 2019;53(8):720–9.

    Article  CAS  Google Scholar 

  18. Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264.

    Article  CAS  PubMed Central  Google Scholar 

  19. Fernandes GJ, Kumar L, Sharma K, Tunge R, Rathnanand M. A review on solubility enhancement of carvedilol—a BCS class II drug. J Pharm Innov. 2018;13(3):197–212.

    Article  Google Scholar 

  20. Tabernero A, Martín del Valle EM, Galán MA. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem Eng Process. 2012; 60:9–25.

  21. Liu J, Tu L, Cheng M, Feng J, Jin Y. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliver Sci Tech. 2020;56:101607.

    Article  CAS  Google Scholar 

  22. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–16.

    Article  Google Scholar 

  23. Rohrs BR, Amidon GE, Meury RH, Secreast PJ, King HM, Skoug CJ. Particle size limits to meet USP content uniformity criteria for tablets and capsules. J Pharm Sci. 2006;95(5):1049–59.

    Article  CAS  PubMed  Google Scholar 

  24. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharmaceut. 2006;321(1–2):1–11.

    Article  CAS  Google Scholar 

  25. Chu KR, Lee E, Jeong SH, Park ES. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 2012;35(7):1187–95.

    Article  CAS  PubMed  Google Scholar 

  26. Rantakylä M, Jäntti M, Aaltonen O, Hurme M. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique. J Supercrit Fluids. 2002;24(3):251–63.

    Article  Google Scholar 

  27. Subra P, Jestin P. Powders elaboration in supercritical media: comparison with conventional routes. Powder Technol. 1999;103(1):2–9.

    Article  CAS  Google Scholar 

  28. Reverchon E, De Marco I, Torino E. Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J Supercrit Fluids. 2007;43(1):126–38.

    Article  CAS  Google Scholar 

  29. Hakuta Y, Hayashi H, Arai K. Fine particle formation using supercritical fluids. Curr Opin Solid St M. 2003;7(4–5):341–51.

    Article  CAS  Google Scholar 

  30. Werling JO, Debenedetti PG. Numerical modeling of mass transfer in the supercritical antisolvent process: miscible conditions. J Supercrit Fluids. 2000;18(1):11–24.

    Article  CAS  Google Scholar 

  31. Werling JO, Debenedetti PG. Numerical modeling of mass transfer in the supercritical antisolvent process. J Supercrit Fluids. 1999;16(2):167–81.

    Article  CAS  Google Scholar 

  32. Li M, Azad M, Davé R, Bilgili E. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics. 2016;8(2):17.

    Article  PubMed Central  CAS  Google Scholar 

  33. Schenck LR, Plank RV. Impact milling of pharmaceutical agglomerates in the wet and dry states. Int J Pharmaceut. 2008;348(1–2):18–26.

    Article  CAS  Google Scholar 

  34. Jung HJ, Sohn Y, Sung HG, Hyun HS, Shin WG. Physicochemical properties of ball milled boron particles: dry vs. wet ball milling process. Powder Technol. 2015;296:548–53.

    Article  CAS  Google Scholar 

  35. Islam MZ, Kitamura Y, Kokawa M, Fujii S. Processing of green tea pastes by micro wet milling system: influences on physicochemical and functional properties. Innov Food Sci Emerg. 2020;64:102408.

    Article  CAS  Google Scholar 

  36. Amoura H, Mokrane H, Nadjemi B. Effect of wet and dry milling on the functional properties of whole sorghum grain flour and kafirin. J Food Sci Tech. 2020;57(3):1100–9.

    Article  CAS  Google Scholar 

  37. Shashanka R, Uzun O, Chaira D. Synthesis of nano-structured duplex and ferritic stainless steel powders by dry milling and its comparison with wet milling. Arch Metall Mater. 2020;65:5–14.

    CAS  Google Scholar 

  38. Thalberg K, Lindholm D, Axelsson A. Comparison of different flowability tests for powders for inhalation. Powder Technol. 2004;146(3):206–13.

    Article  CAS  Google Scholar 

  39. Naik S, Chaudhuri B. Quantifying dry milling in pharmaceutical processing: a review on experimental and modeling approaches. J Pharm Sci. 2015;104(8):2401–13.

    Article  CAS  PubMed  Google Scholar 

  40. Saleem IY, Smyth HDC. Micronization of a soft material: air-jet and micro-ball milling. AAPS PharmSciTech. 2010;11(4):1642–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barzegar-Jalali M, Valizadeh H, Shadbad MRS, Adibkia K, Mohammadi G, Farahani A, et al. Cogrinding as an approach to enhance dissolution rate of a poorly water-soluble drug (gliclazide). Powder Technol. 2010;197(3):150–8.

    Article  CAS  Google Scholar 

  42. Vogt M, Kunath K, Dressman JB. Dissolution improvement of four poorly water soluble drugs by cogrinding with commonly used excipients. Eur J Pharm Biopharm. 2008;68(2):330–7.

    Article  CAS  PubMed  Google Scholar 

  43. Muehlenfeld C, Kann B, Windbergs M, Thommes M. Solid dispersions prepared by continuous cogrinding in an air jet mill. J Pharm Sci. 2013;102(11):4132–9.

    Article  CAS  PubMed  Google Scholar 

  44. Brittain HG. Effects of mechanical processing on phase composition. J Pharm Sci. 2002;91(7):1573–80.

    Article  CAS  PubMed  Google Scholar 

  45. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharmaceut. 2008;5(6):905–20.

    Article  CAS  Google Scholar 

  46. Willart JF, Durand M, Briggner LE, Marx A, Danède F, Descamps M. Solid-state amorphization of linaprazan by mechanical milling and evidence of polymorphism. J Pharm Sci. 2013;102(7):2214–20.

    Article  CAS  PubMed  Google Scholar 

  47. Krupa A, Descamps M, Willart JF, Jachowicz R, Danède F. High energy ball milling and supercritical carbon dioxide impregnation as co-processing methods to improve dissolution of tadalafil. European J Pharm Sci. 2016;95:130–7.

    Article  CAS  Google Scholar 

  48. Shah UV, Wang Z, Olusanmi D, Narang AS, Hussain MA, Tobyn MJ, et al. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders. Int J Pharmaceut. 2015;495(1):234–40.

    Article  CAS  Google Scholar 

  49. Yadav KS, Kale K. High pressure homogenizer in pharmaceuticals: understanding its critical processing parameters and applications. J Pharm Innov. 2019:1–12

  50. Powar TA, Hajare AA. Lyophilized ethinylestradiol nanosuspension: fabrication, characterization and evaluation of in vitro anticancer and pharmacokinetic study. Indian J Pharm Sci. 2020;82(1):54–9.

    Article  CAS  Google Scholar 

  51. Zhou Y, Fang Q, Niu B, Wu B, Zhao Y, Quan G, et al. Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Colloids Surf B. 2018;172:372–9.

    Article  CAS  Google Scholar 

  52. He J, Han Y, Xu G, Yin L, Ngandeu Neubi M, Zhou J, et al. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv. 2017;7(22):13053–64.

    Article  CAS  Google Scholar 

  53. Gora S, Mustafa G, Sahni JK, Ali J, Baboota S. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study. Drug Deliv. 2016;23(3):930–40.

    Article  CAS  Google Scholar 

  54. Sharma S, Verma A, Teja BV, Shukla P, Mishra PR. Development of stabilized paclitaxel nanocrystals: in-vitro and in-vivo efficacy studies. Eur J Pharm Sci. 2015;69:51–60.

    Article  CAS  PubMed  Google Scholar 

  55. Homayouni A, Sadeghi F, Varshosaz J, Afrasiabi Garekani H, Nokhodchi A. Promising dissolution enhancement effect of soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques. Colloids Surf B. 2014;122:591–600.

    Article  CAS  Google Scholar 

  56. Kluge J, Muhrer G, Mazzotti M. High pressure homogenization of pharmaceutical solids. J Supercrit Fluids. 2012;66:380–8.

    Article  CAS  Google Scholar 

  57. Herbrink M, Schellens JHM, Beijnen JH, Nuijen B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int J Pharmaceut. 2017;529(1–2):294–302.

    Article  CAS  Google Scholar 

  58. Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. Int J Pharmaceut. 2017;532(1):289–98.

    Article  CAS  Google Scholar 

  59. Chow MYT, Qiu Y, Lo FFK, Lin HHS, Chan HK, Kwok PCL, et al. Inhaled powder formulation of naked siRNA using spray drying technology with L-leucine as dispersion enhancer. Int J Pharmaceut. 2017;530(1–2):40–52.

    Article  CAS  Google Scholar 

  60. Yoshii H, Neoh TL, Furuta T, Ohkawara M. Encapsulation of proteins by spray drying and crystal transformation method. Dry Technol. 2008;26(11):1308–12.

    Article  CAS  Google Scholar 

  61. Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27–50.

    Article  CAS  PubMed  Google Scholar 

  62. Ameri M, Maa YF. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24(6):763–8.

    Article  CAS  Google Scholar 

  63. Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99(2):575–86.

  64. Farid M. A new approach to modelling of single droplet drying. Chem Eng Sci. 2003;58(13):2985–93.

    Article  CAS  Google Scholar 

  65. Muzaffar K, Kumar P. Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technol. 2015;279:179–84.

    Article  CAS  Google Scholar 

  66. Bhandari BR, Patel KC, Chen XD. Spray drying of food materials - process and product characteristics. Drying technologies in food processing. 2008;4:113–29.

    Google Scholar 

  67. Matteucci ME, Hotze MA, Johnston KP, Williams RO. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951–9.

    Article  CAS  PubMed  Google Scholar 

  68. Thorat AA, Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J. 2012;181:1–34.

    Article  CAS  Google Scholar 

  69. Park MW, Yeo SD. Antisolvent crystallization of carbamazepine from organic solutions. Chem Eng Res Des. 2012;90(12):2202–8.

    Article  CAS  Google Scholar 

  70. Lee SK, Sim WY, Ha ES, Park H, Kim JS, Jeong JS, et al. Solubility of bisacodyl in fourteen mono solvents and N-methyl-2-pyrrolidone + water mixed solvents at different temperatures, and its application for nanosuspension formation using liquid antisolvent precipitation. J Mol Liq. 2020;310:113264.

    Article  CAS  Google Scholar 

  71. Zhang X, Zhang H, Xia X, Pu N, Yu Z, Nabih M, et al. Preparation and physicochemical characterization of soy isoflavone (SIF) nanoparticles by a liquid antisolvent precipitation method. Adv Powder Technol. 2019;30(8):1522–30.

    Article  CAS  Google Scholar 

  72. Prasad R, Dalvi SV. Understanding morphological evolution of griseofulvin particles into hierarchical microstructures during liquid antisolvent precipitation. Cryst Growth Des. 2019;19(10):5836–49.

    Article  CAS  Google Scholar 

  73. Rathi N, Paradkar A, Gaikar VG. Polymorphs of curcumin and its cocrystals with cinnamic acid. J Pharm Sci. 2019;108(8):2505–16.

    Article  CAS  PubMed  Google Scholar 

  74. Rathod WR, Rathod VK. Continuous preparation of nimesulide nanoparticles by liquid antisolvent precipitation using spinning disc reactor. J Chem Technol Biot. 2019;94(3):919–26.

    CAS  Google Scholar 

  75. Wu W, Zu Y, Wang L, Wang L, Li Y, Liu Y, et al. Preparation, characterization and antitumor activity evaluation of silibinin nanoparticles for oral delivery through liquid antisolvent precipitation. RSC Adv. 2017;7(86):54379–90.

    Article  CAS  Google Scholar 

  76. Wu W, Zu Y, Wang L, Wang L, Wang H, Li Y, et al. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique. Drug Deliv. 2017;24(1):1713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li W, Zhao X, Sun X, Zu Y, Liu Y, Ge Y. Evaluation of antioxidant ability in vitro and bioavailability of trans -cinnamic acid nanoparticle by liquid antisolvent precipitate. J Nanomater. 2016

  78. Li Y, Zhao X, Zu Y, Zhang Y, Ge Y, Zhong C, et al. Preparation and characterization of micronized ellagic acid using antisolvent precipitation for oral delivery. Int J Pharmaceut. 2015;486(1–2):207–16.

    Article  CAS  Google Scholar 

  79. Zu Y, Wu W, Zhao X, Li Y, Wang W, Zhong C, et al. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int J Pharmaceut. 2014;471(1–2):366–76.

    Article  CAS  Google Scholar 

  80. Shah SR, Parikh RH, Chavda JR, Sheth NR. Application of Plackett-Burman screening design for preparing glibenclamide nanoparticles for dissolution enhancement. Powder Technol. 2013;235:405–11.

    Article  CAS  Google Scholar 

  81. Park SJ, Yeo SD. Liquid antisolvent recrystallization of phenylbutazone and the effect of process parameters. Sep Sci Technol. 2011;46(8):1273–9.

    Article  CAS  Google Scholar 

  82. Meer TA, Sawant KP, Amin PD. Liquid antisolvent precipitation process for solubility modulation of bicalutamide. Acta Pharmaceut. 2011;61(4):435–45.

    Article  CAS  Google Scholar 

  83. Zhang ZB, Shen ZG, Wang JX, Zhao H, Chen JF, Yun J. Nanonization of megestrol acetate by liquid precipitation. Ind Eng Chem Res. 2009;48(18):8493–9.

    Article  CAS  Google Scholar 

  84. Murnane D, Marriott C, Martin GP. Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization. Eur J Pharm Biopharm. 2008;69(1):94–105.

    Article  CAS  PubMed  Google Scholar 

  85. An JH, Kim WS. Antisolvent crystallization using ionic liquids as solvent and antisolvent for polymorphic design of active pharmaceutical ingredient. Cryst Growth Des. 2013;13(1):31–9.

    Article  CAS  Google Scholar 

  86. Adawiyah N, Moniruzzaman M, Hawatulaila S, Goto M. Ionic liquids as a potential tool for drug delivery systems. MedChemComm. 2016;7(10):1881–97.

    Article  CAS  Google Scholar 

  87. Karthika S, Radhakrishnan TK, Kalaichelvi P. Measurement of nucleation rate of ibuprofen in ionic liquid using induction time method. J Cryst Growth. 2019;521:55–9.

    Article  CAS  Google Scholar 

  88. Prasad R, Panwar K, Katla J, Dalvi SV. Polymorphism and particle formation pathway of carbamazepine during sonoprecipitation from ionic liquid solutions. Cryst Growth Des. 2020;20(8):5169–83.

    Article  CAS  Google Scholar 

  89. de Azevedo JR, Fabienne E, Letourneau JJ, Inês RM. Antisolvent crystallization of a cardiotonic drug in ionic liquids: effect of mixing on the crystal properties. J Cryst Growth. 2017;472:29–34.

    Article  CAS  Google Scholar 

  90. Viçosa A, Letourneau JJ, Espitalier F, Inês RM. An innovative antisolvent precipitation process as a promising technique to prepare ultrafine rifampicin particles. J Cryst Growth. 2012;342(1):80–7.

    Article  CAS  Google Scholar 

  91. Yang Q, Zu C, Li W, Wu W, Ge Y, Wang L, et al. Enhanced water solubility and oral bioavailability of paclitaxel crystal powders through an innovative antisolvent precipitation process: antisolvent crystallization using ionic liquids as solvent. Pharmaceutics. 2020;12(11):1008.

    Article  CAS  PubMed Central  Google Scholar 

  92. Kim HJ, Yeo SD. Liquid antisolvent crystallization of griseofulvin from organic solutions. Chem Eng Res Des. 2015;97:68–76.

    Article  CAS  Google Scholar 

  93. Pandey KU, Poornachary SK, Dalvi SV. Insights to the action of additives for stabilization of ultrafine particles of fenofibrate in aqueous suspensions produced by sonoprecipitation. Powder Technol. 2020;363:310–25.

    Article  CAS  Google Scholar 

  94. Guo Z, Zhang M, Li H, Wang J, Kougoulos E. Effect of ultrasound on anti-solvent crystallization process. J Cryst Growth. 2005;273(3–4):555–63.

    Article  CAS  Google Scholar 

  95. Feng Q, Sun J, Jiang X. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale. 2016;8(25):12430–43.

    Article  CAS  PubMed  Google Scholar 

  96. Di D, Qu X, Liu C, Fang L, Quan P. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform. Int J Pharmaceut. 2019;572:118831.

    Article  CAS  Google Scholar 

  97. Shrimal P, Jadeja G, Patel S. Microfluidics nanoprecipitation of telmisartan nanoparticles: effect of process and formulation parameters. Chem Pap. 2020:1–10.

  98. Shrimal P, Jadeja G, Patel S. A review on novel methodologies for drug nanoparticle preparation: microfluidic approach. Chem Eng Res Des. 2020;153:728–56.

    Article  CAS  Google Scholar 

  99. Niwa T, Shimabara H, Kondo M, Danjo K. Design of porous microparticles with single-micron size by novel spray freeze-drying technique using four-fluid nozzle. Int J Pharmaceut. 2009;382(1–2):88–97.

    Article  CAS  Google Scholar 

  100. Bi R, Shao W, Wang Q, Zhang N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16(9):639–48.

    Article  CAS  PubMed  Google Scholar 

  101. Ishwarya SP, Anandharamakrishnan C, Stapley AGF. Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 2015;41(2):161–81.

    Article  CAS  Google Scholar 

  102. Rogers S, Wu WD, Saunders J, Chen XD. Characteristics of milk powders produced by spray freeze drying. Dry Technol. 2008;26(4):404–12.

    Article  CAS  Google Scholar 

  103. Wang Y, Kho K, Cheow WS, Hadinoto K. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles. Int J Pharmaceut. 2012;424(1–2):98–106.

    Article  CAS  Google Scholar 

  104. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharmaceut. 2015;488(1–2):136–53.

    Article  CAS  Google Scholar 

  105. Parthasarathi S, Anandharamakrishnan C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod Process. 2016;100:469–76.

    Article  CAS  Google Scholar 

  106. Ye T, Yu J, Luo Q, Wang S, Chan HK. Inhalable clarithromycin liposomal dry powders using ultrasonic spray freeze drying. Powder Technol. 2017;305:63–70.

    Article  CAS  Google Scholar 

  107. Ali ME, Lamprecht A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm. 2014;87(3):510–7.

    Article  CAS  PubMed  Google Scholar 

  108. Wolff E, Gibert H. Atmospheric freeze-drying part 2: modelling drying kinetics using adsorption isotherms. Dry Technol. 1990;8(2):405–28.

    Article  Google Scholar 

  109. Abdul-Fattah AM, Kalonia DS, Pikal MJ. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci. 2007;96(8):1886–916.

    Article  CAS  PubMed  Google Scholar 

  110. Tanaka R, Hattori Y, Otsuka M, Ashizawa K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev Ind Pharm. 2020;46(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  111. Liao Q, Yip L, Chow MYT, Chow SF, Chan HK, Kwok PCL, et al. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int J Pharmaceut. 2019;560:144–54.

    Article  CAS  Google Scholar 

  112. Ibrahim M, Hatipoglu MK, Garcia-Contreras L. Cryogenic fabrication of dry powders to enhance the solubility of a promising anticancer drug, SHetA2, for oral administration. AAPS PharmSciTech. 2019;20(1):1–10.

    Article  CAS  Google Scholar 

  113. Ferrati S, Wu T, Fuentes O, Brunaugh AD, Kanapuram SR, Smyth HDC. Influence of formulation factors on the aerosol performance and stability of lysozyme powders: a systematic approach. AAPS PharmSciTech. 2018;19(7):2755–66.

    Article  CAS  PubMed  Google Scholar 

  114. Parsian AR, Vatanara A, Rahmati MR, Gilani K, Khosravi KM, Najafabadi AR. Inhalable budesonide porous microparticles tailored by spray freeze drying technique. Powder Technol. 2014;260:36–41.

    Article  CAS  Google Scholar 

  115. Niwa T, Mizutani D, Danjo K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem Pharm Bull. 2012;60(7):870–6.

    Article  CAS  Google Scholar 

  116. He X, Pei L, Tong HHY, Zheng Y. Comparison of spray freeze drying and the solvent evaporation method for preparing solid dispersions of baicalein with pluronic F68 to improve dissolution and oral bioavailability. AAPS PharmSciTech. 2011;12:104–13.

    Article  CAS  PubMed  Google Scholar 

  117. Rogers TL, Nelsen AC, Sarkari M, Young TJ, Johnston KP, Williams RO. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. Pharm Res. 2003;20(3):485–93.

    Article  CAS  PubMed  Google Scholar 

  118. Rogers TL, Hu J, Yu Z, Johnston KP, Williams RO. A novel particle engineering technology: spray-freezing into liquid. Int J Pharmaceut. 2002;242(1–2):93–100.

    Article  CAS  Google Scholar 

  119. Türk M, Bolten D. Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). J Supercrit Fluids. 2016;116:239–50.

    Article  CAS  Google Scholar 

  120. Adeli E. The use of supercritical anti-solvent (SAS) technique for preparation of Irbesartan-Pluronic® F-127 nanoparticles to improve the drug dissolution. Powder Technol. 2016;298:65–72.

    Article  CAS  Google Scholar 

  121. Machado LC, Pelegati VB, Oliveira AL. Study of simple microparticles formation of limonene in modified starch using PGSS - particles from gas-saturated suspensions. J Supercrit Fluids. 2016;107:260–9.

    Article  CAS  Google Scholar 

  122. Phillips EM, Stella VJ. Rapid expansion from supercritical solutions: application to pharmaceutical processes. Int J Pharmaceut. 1993;94(1–3):1–10.

    Article  CAS  Google Scholar 

  123. Fages J, Lochard H, Letourneau JJ, Sauceau M, Rodier E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technol. 2004;141(3):219–26.

    Article  CAS  Google Scholar 

  124. Türk M. Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions. J Supercrit Fluids. 2000;18(3):169–84.

    Article  Google Scholar 

  125. Hezave AZ, Esmaeilzadeh F. Investigation of the rapid expansion of supercritical solution parameters effects on size and morphology of cephalexin particles. J Aerosol Sci. 2010;41(12):1090–102.

    Article  CAS  Google Scholar 

  126. Bolten D, Türk M. Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS). J Supercrit Fluids. 2012;62:32–40.

    Article  CAS  Google Scholar 

  127. Lin PC, Su CS, Tang M, Chen YP. Micronization of ethosuximide using the rapid expansion of supercritical solution (RESS) process. J Supercrit Fluids. 2012;72:84–9.

    Article  CAS  Google Scholar 

  128. Pourasghar M, Fatemi S, Vatanara A, Rouholamini NA. Production of ultrafine drug particles through rapid expansion of supercritical solution; a statistical approach. Powder Technol. 2012;225:21–6.

    Article  CAS  Google Scholar 

  129. Keshavarz A, Karimi-Sabet J, Fattahi A, Golzary A, Rafiee-Tehrani M, Dorkoosh FA. Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS). J Supercrit Fluids. 2012;63:169–79.

    Article  CAS  Google Scholar 

  130. Hiendrawan S, Veriansyah B, Tjandrawinata RR. Micronization of fenofibrate by rapid expansion of supercritical solution. J Ind Eng Chem. 2014;20(1):54–60.

    Article  CAS  Google Scholar 

  131. Keshmiri K, Vatanara A, Tavakoli O, Manafi N. Production of ultrafine clobetasol propionate via rapid expansion of supercritical solution (RESS): Full factorial approach. J Supercrit Fluids. 2015;101:176–83.

    Article  CAS  Google Scholar 

  132. Yim JH, Kim WS, Lim JS. Recrystallization of adefovir dipivoxil particles using the rapid expansion of supercritical solutions (RESS) process. J Supercrit Fluids. 2013;82:168–76.

    Article  CAS  Google Scholar 

  133. Baseri H, Lotfollahi MN. Formation of gemfibrozil with narrow particle size distribution via rapid expansion of supercritical solution process (RESS). Powder Technol. 2013;235:677–84.

    Article  CAS  Google Scholar 

  134. Hezave AZ, Esmaeilzadeh F. Fabrication of micron level particles of amoxicillin by rapid expansion of supercritical solution. J Disper Sci Technol. 2012;33(10):1419–28.

    Article  CAS  Google Scholar 

  135. Asghari I, Esmaeilzadeh F. Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach. Int J Pharmaceut. 2012;433(1–2):149–56.

    Article  CAS  Google Scholar 

  136. Hezave AZ, Esmaeilzadeh F. Recrystallization of microparticles of fenoprofen using rapid expansion of supercritical solution. J Disper Sci Technol. 2012;33(8):1106–15.

    Article  CAS  Google Scholar 

  137. Yu H, Zhao X, Zu Y, Zhang X, Zu B, Zhang X. Preparation and characterization of micronized artemisinin via a rapid expansion of supercritical solutions (RESS) method. Int J Mol Sci. 2012;13(4):5060–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hezave AZ, Esmaeilzadeh F. Crystallization of micro particles of sulindac using rapid expansion of supercritical solution. J Cryst Growth. 2010;312(22):3373–83.

    Article  CAS  Google Scholar 

  139. Tsai CC, Lin H, Lee MJ. Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. J Taiwan Inst Chem E. 2017;72:19–28.

  140. Wolff S, Beuermann S, Türk M. Impact of rapid expansion of supercritical solution process conditions on the crystallinity of poly(vinylidene fluoride) nanoparticles. J Supercrit Fluids. 2016;117:18–25.

    Article  CAS  Google Scholar 

  141. Paisana MC, Müllers KC, Wahl MA, Pinto JF. Production and stabilization of olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS). J Supercrit Fluids. 2016;109:124–33.

    Article  CAS  Google Scholar 

  142. Sodeifian G, Sajadian SA. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). J Supercrit Fluids. 2018;133:239–52.

    Article  CAS  Google Scholar 

  143. De La Fuente JC, Shariati A, Peters CJ. On the selection of optimum thermodynamic conditions for the GAS process. J Supercrit Fluids. 2004;32(1–3):55–61.

    Article  CAS  Google Scholar 

  144. Muhrer G, Mazzotti M, Müller M. Gas antisolvent recrystallization of an organic compound. Tailoring product PSD and scaling-up. J Supercrit Fluids. 2003;27(2):195–203.

    Article  CAS  Google Scholar 

  145. Bakhbakhi Y, Charpentier PA, Rohani S. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery. Int J Pharmaceut. 2006;309(1–2):71–80.

    Article  CAS  Google Scholar 

  146. Padrela L, Zeglinski J, Ryan KM. Insight into the role of additives in controlling polymorphic outcome: a CO2-antisolvent crystallization process of carbamazepine. Cryst Growth Des. 2017;17(9):4544–53.

    Article  CAS  Google Scholar 

  147. Jafari D, Nowee SM, Noie SH. A kinetic modeling of particle formation by gas antisolvent process: precipitation of aspirin. J Disper Sci Technol. 2017;38(5):677–85.

    Article  CAS  Google Scholar 

  148. Kalogiannis CG, Pavlidou E, Panayiotou CG. Production of amoxicillin microparticles by supercritical antisolvent precipitation. Ind Eng Chem Res. 2005;44(24):9339–46.

    Article  CAS  Google Scholar 

  149. Choi S, Lee K, Kwon S, Kim H. Preparation of fine particles of poly(N-vinyl-2-pyrrolidone-co-2-methylene-1,3-dioxepane) using supercritical antisolvent. J Supercrit Fluids. 2006;37(3):287–91.

    Article  CAS  Google Scholar 

  150. Tenorio A, Gordillo MD, Pereyra C, de la Ossa EJM. Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation. J Supercrit Fluids. 2007;40(2):308–16.

    Article  CAS  Google Scholar 

  151. Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2008;69(2):454–65.

    Article  CAS  PubMed  Google Scholar 

  152. Chen YM, Tang M, Chen YP. Recrystallization and micronization of sulfathiazole by applying the supercritical antisolvent technology. Chem Eng J. 2010;165(1):358–64.

    Article  CAS  Google Scholar 

  153. Roy C, Vrel D, Vega-González A, Jestin P, Laugier S, Subra-Paternault P. Effect of CO2-antisolvent techniques on size distribution and crystal lattice of theophylline. J Supercrit Fluids. 2011;57(3):267–77.

    Article  CAS  Google Scholar 

  154. Chang SC, Hsu TH, Chu YH, Lin H, Lee MJ. Micronization of aztreonam with supercritical anti-solvent process. J Taiwan Inst Chem E. 2012;43(5):790–7.

    Article  CAS  Google Scholar 

  155. Kefeng X, Weiqiang W, Dedong H, Zhihui H, Yanpeng Q, Yan L. Preparation of cefquinome nanoparticles by using the supercritical antisolvent process. J Nanomater. 2015; Article ID 767945

  156. Ha ES, Kim JS, Baek IH, Yoo JW, Jung Y, Moon HR, et al. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Drug Des Devel Ther. 2015;9:4269–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ha ES, Kim JS, Baek IH, Hwang SJ, Kim MS. Enhancement of dissolution and bioavailability of ezetimibe by amorphous solid dispersion nanoparticles fabricated using supercritical antisolvent process. J Pharm Investig. 2015;45(7):641–9.

    Article  CAS  Google Scholar 

  158. Wu WY, Su CS. Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process. J Cryst Growth. 2016;460:59–66.

    Article  CAS  Google Scholar 

  159. Montes A, Wehner L, Pereyra C, Ossa EJM. Generation of microparticles of ellagic acid by supercritical antisolvent process. J Supercrit Fluids. 2016;116:101–10.

    Article  CAS  Google Scholar 

  160. Montes A, Wehner L, Pereyra C, Ossa EJM. Mangiferin nanoparticles precipitation by supercritical antisolvent process. J Supercrit Fluids. 2016;112:44–50.

    Article  CAS  Google Scholar 

  161. Gokhale A, Khusid B, Dave RN, Pfeffer R. Effect of solvent strength and operating pressure on the formation of submicrometer polymer particles in supercritical microjets. J Supercrit Fluids. 2007;43(2):341–56.

    Article  CAS  Google Scholar 

  162. Dukhin SS, Zhu C, Dave R, Pfeffer R, Luo JJ, Chávez F, et al. Dynamic interfacial tension near critical point of a solvent-antisolvent mixture and laminar jet stabilization. Colloid Surface A. 2003;229(1–3):181–99.

    Article  CAS  Google Scholar 

  163. Lengsfeld CS, Delplanque JP, Barocas VH, Randolph TW. Mechanism governing microparticle morphology during precipitation by a compressed antisolvent: atomization vs nucleation and growth. J Phys Chem B. 2000;104(12):2725–35.

    Article  CAS  Google Scholar 

  164. Reverchon E, Torino E, Dowy S, Braeuer A, Leipertz A. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chem Eng J. 2010;156(2):446–58.

    Article  CAS  Google Scholar 

  165. Kang Y, Wu J, Yin G, Huang Z, Liao X, Yao Y, et al. Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO2. Langmuir. 2008;24(14):7432–41.

    Article  CAS  PubMed  Google Scholar 

  166. Gupta RB, Chattopadhyay P. Method of forming nanoparticles and microparticles of controllable size using supercritical fluids with enhanced mass transfer. US6620351B2. 2002.

  167. Chattopadhyay P, Gupta RB. Protein nanoparticles formation by supercritical antisolvent with enhanced mass transfer. AIChE J. 2002;48(2):235–44.

    Article  CAS  Google Scholar 

  168. Jin HY, Hemingway M, Xia F, Li SN, Zhao YP. Production of β-carotene nanoparticles by the solution enhanced dispersion with enhanced mass transfer by ultrasound in supercritical CO2 (SEDS-EM). Ind Eng Chem Res. 2011;50(23):13475–84.

    Article  CAS  Google Scholar 

  169. Jia J, Wang W, Gao Y, Zhao Y. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent. Ultrason Sonochem. 2015;27:389–94.

    Article  CAS  PubMed  Google Scholar 

  170. Reverchon E, De Marco I, Caputo G, Della PG. Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation. J Supercrit Fluids. 2003;26(1):1–7.

    Article  CAS  Google Scholar 

  171. Adami R, Reverchon E, Järvenpää E, Huopalahti R. Supercritical antisolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol. 2008;182(1):105–12.

    Article  CAS  Google Scholar 

  172. Reverchon E, Caputo G, Correra S, Cesti P. Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale. J Supercrit Fluids. 2003;26(3):253–61.

    Article  CAS  Google Scholar 

  173. Strumendo M, Bertucco A, Elvassore N. Modeling of particle formation processes using gas saturated solution atomization. J Supercrit Fluids. 2007;41(1):115–25.

    Article  CAS  Google Scholar 

  174. Mandžuka Z, Knez Ž. Influence of temperature and pressure during PGSSTM micronization and storage time on degree of crystallinity and crystal forms of monostearate and tristearate. J Supercrit Fluids. 2008;45(1):102–11.

    Article  CAS  Google Scholar 

  175. Fraile M, Martín Á, Deodato D, Rodriguez-Rojo S, Nogueira ID, Simplício AL, et al. Production of new hybrid systems for drug delivery by PGSS (particles from gas saturated solutions) process. J Supercrit Fluids. 2013;81:226–35.

    Article  CAS  Google Scholar 

  176. Pestieau A, Krier F, Lebrun P, Brouwers A, Streel B, Evrard B. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int J Pharmaceut. 2015;485(1–2):295–305.

    Article  CAS  Google Scholar 

  177. Brion M, Jaspart S, Perrone L, Piel G, Evrard B. The supercritical micronization of solid dispersions by particles from gas saturated solutions using experimental design. J Supercrit Fluids. 2009;51(1):50–6.

    Article  CAS  Google Scholar 

  178. Chen W, Hu X, Hong Y, Su Y, Wang H, Li J. Ibuprofen nanoparticles prepared by a PGSSTM-based method. Powder Technol. 2013;245:241–50.

    Article  CAS  Google Scholar 

  179. Pedro AS, Villa SD, Caliceti P, De Melo SABV, Albuquerque EC, Bertucco A, et al. Curcumin-loaded solid lipid particles by PGSS technology. J Supercrit Fluids. 2016;107:534–41.

    Article  CAS  Google Scholar 

  180. Gera T, Nagy E, Smausz T, Budai J, Ajtai T, Kun-Szabó F, et al. Application of pulsed laser ablation (PLA) for the size reduction of non-steroidal anti-inflammatory drugs (NSAIDs). Sci Rep. 2020;10(1):1–13.

    Article  CAS  Google Scholar 

  181. Kenth S, Sylvestre JP, Fuhrmann K, Meunier M, Leroux JC. Fabrication of paclitaxel nanocrystals by femtosecond laser ablation and fragmentation. J Pharm Sci. 2011;100(3):1022–30.

    Article  CAS  PubMed  Google Scholar 

  182. Ding W, Sylvestre J-P, Leclair G, Meunier M. Laser fragmentation as an efficient size-reduction method for pulmonary drug discovery: proof-of-concept study of beclomethasone dipropionate. IJTAN. 2012;1(1):99–104.

    CAS  Google Scholar 

  183. Ding W, Sylvestre JP, Bouvier E, Leclair G, Meunier M. Ultrafast laser processing of drug particles in water for pharmaceutical discovery. Appl Phys A. 2014;114(1):267–76.

    Article  CAS  Google Scholar 

  184. Singh A, Kutscher HL, Bulmahn JC, Mahajan SD, He GS, Prasad PN. Laser ablation for pharmaceutical nanoformulations: multi-drug nanoencapsulation and theranostics for HIV. Nanomedicine. 2020;25:102172.

    Article  CAS  PubMed  Google Scholar 

  185. Ambrus R, Szabó-Révész P, Kiss T, Nagy E, Szűcs T, Smausz T, et al. Application of a suitable particle engineering technique by pulsed laser ablation in liquid (PLAL) to modify the physicochemical properties of poorly soluble drugs. J Drug Deliver Sci Tec. 2020;57:101727.

    Article  CAS  Google Scholar 

  186. Hopp B, Nagy E, Peták F, Smausz T, Kopniczky J, Tápai C, et al. Production of meloxicam suspension using pulsed laser ablation in liquid (PLAL) technique. J Phys D Appl Phys. 2018;51(16):165401.

    Article  CAS  Google Scholar 

  187. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  CAS  PubMed  Google Scholar 

  188. Salazar J, Heinzerling O, Müller RH, Möschwitzer JP. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Int J Pharm. 2011;420(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  189. Salazar J, Müller RH, Möschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci. 2013;49(4):565–77.

    Article  CAS  PubMed  Google Scholar 

  190. Liu T, Müller RH, Möschwitzer JP. Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions. AAPS PharmSciTech. 2017;18(5):1683–91.

    Article  CAS  PubMed  Google Scholar 

  191. Salazar J, Müller R, Möschwitzer JP. Performance comparison of two novel combinative particle-size-reduction technologies. J Pharm Sci. 2013;102(5):1636–49.

    Article  CAS  PubMed  Google Scholar 

  192. Qiao Y, Cao Y, Yu K, Zong L, Pu X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int J Pharm. 2020;589:119830.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Prof. Santosh K. Gupta, Department of Chemical Engineering, University of Petroleum and Energy Studies, for his help in the language editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Thakur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Thakur, A.K., Chaudhari, P. et al. Particle Size Reduction Techniques of Pharmaceutical Compounds for the Enhancement of Their Dissolution Rate and Bioavailability. J Pharm Innov 17, 333–352 (2022). https://doi.org/10.1007/s12247-020-09530-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09530-5

Keywords

Navigation