Skip to main content
Log in

Numerical study on the bubble dynamics in a broken confined domain

  • Special Column on 31th NCHD
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic characteristics of the bubble in a broken confined domain are studied. The broken confined domain is composed of a solid wall and a plate that has a hole. The axisymmetric numerical model is established by combining the Eulerian finite-element method with volume of fluid (VOF) method, and is validated by comparing the results with those from an experiment. Then the influences of the wall distance, plate distance and size of the hole are analyzed. The results show that cavity-attraction jet caused by the hole and annular jet caused by the upper solid wall compete with each other to dominate the bubble dynamics. The cavity-attraction jet develops earlier, but slower. Thus, jet load in the bubble stage is mainly generated by the annular jet with a higher impact speed. Within a certain range, the closer the hole is to the bubble or the smaller the hole, the longer the pulsation period of the bubble will be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besant W. Hydrostatics and hydrodynamics, art. 158 [M]. Cambridge, UK: Cambridge University Press, 1859.

    Google Scholar 

  2. Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94–98.

    Article  MATH  Google Scholar 

  3. Klaseboer E., Khoo B. C. A modified Rayleigh-Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods [J]. Engineering Analysis with Boundary Elements, 2006, 30(1): 59–71.

    Article  MATH  Google Scholar 

  4. Geers T. L., Hunter K. S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601.

    Article  Google Scholar 

  5. Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J]. Journal of Fluid Mechanics, 2018, 841: 287–309.

    Article  MATH  Google Scholar 

  6. He M., Zhang A. M., Liu Y. L. Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method [J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 16–22.

    Article  Google Scholar 

  7. Lee M., Klaseboer E., Khoo B. C. On the boundary integral method for the rebounding bubble [J]. Journal of Fluid Mechanics, 2007, 570: 407–429.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li S., Zhang A. M., Han R. et al. 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere [J]. Journal of Computational Physics, 2019, 392: 713–731.

    Article  MathSciNet  Google Scholar 

  9. Tian Z. L., Liu Y. L., Zhang A. M. et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013.

    Article  Google Scholar 

  10. Kan X. Y., Zhang A. M., Yan J. L. et al. Numerical investigation of ice breaking by a high-pressure bubble based on a coupled BEM-PD model [J]. Journal of Fluids and Structures, 2020, 96: 103016.

    Article  Google Scholar 

  11. Wu W., Liu Y. L., Zhang A. M. et al. Numerical investigation on underwater explosion cavitation characteristics near water wave [J]. Ocean Engineering, 2020, 205: 107321.

    Article  Google Scholar 

  12. Zhang Y. N., Xie X. Y., Zhang Y. N. High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall [J]. Journal of Hydrodynamics, 2018, 30(6): 1012–1021.

    Article  Google Scholar 

  13. Zhang A. M., Wang S. P., Wu G. X. Simulation of bubble motion in a compressible liquid based on the three dimensional wave equation [J]. Engineering Analysis with Boundary Elements, 2013, 37(9): 1179–1188.

    Article  MathSciNet  MATH  Google Scholar 

  14. Klaseboer E., Khoo B. An oscillating bubble near an elastic material [J]. Journal of Applied Physics, 2004, 96(10): 5808–5818.

    Article  Google Scholar 

  15. Brett J. M., Andrew K. A study of bubble collapse pressure pulse waves from small scale underwater explosions near the water surface [J]. Journal of Sound and Vibration, 2018, 435: 91–103.

    Article  Google Scholar 

  16. Han R., Tao L., Zhang A. M. et al. A three-dimensional modeling for coalescence of multiple cavitation bubbles near a rigid wall [J]. Physics of Fluids, 2019, 31(6): 062107.

    Article  Google Scholar 

  17. Jin Z., Yin C., Chen Y. et al. Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure [J]. Ocean Engineering, 2017, 130: 597–610.

    Article  Google Scholar 

  18. Li S., Han R., Zhang A. M. Nonlinear interaction between a gas bubble and a suspended sphere [J]. Journal of Fluids and Structures, 2016, 65: 333–354.

    Article  Google Scholar 

  19. Liu N. N., Cui P., Ren S. F. et al. Study on the interactions between two identical oscillation bubbles and a free surface in a tank [J]. Physics of Fluids, 2017, 29(5): 052104.

    Article  Google Scholar 

  20. Karri B., Ohl S., Klaseboer E. et al. Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole [J]. Physical Review E, 2012, 86(3): 036309.

    Article  Google Scholar 

  21. Dadvand A., Dawoodian M., Khoo B. C. et al. Spark-generated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation [J]. Acta Mechanica Sinica, 2013, 29(5): 657–666.

    Article  Google Scholar 

  22. Liu Y. L., Wang S. P., Zhang A. M. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28(6): 062105.

    Article  Google Scholar 

  23. Liu N. N., Wu W. B., Zhang A. M. et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate [J]. Physics of Fluids, 2017, 29(10): 107102.

    Article  Google Scholar 

  24. Zhang A. M., Sun P. N., Ming F. R. et al. Smoothed particle hydrodynamics and its applications in fluidstructure interactions [J]. Journal of Hydrodynamics, 2017, 29(2): 187–216.

    Article  Google Scholar 

  25. Guo K., Sun P. N., Cao X. Y. et al. A 3-D SPH model for simulating water flooding of a damaged floating structure [J] Journal of Hydrodynamics, 2017, 29(5): 831–844.

    Article  Google Scholar 

  26. Liu Y., Zhang A. M., Tian Z. et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190.

    Article  Google Scholar 

  27. Wang S. P., Zhang A. M., Liu Y. L. et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–991.

    Article  Google Scholar 

  28. Klaseboer E., Hung K., Wang C. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387.

    Article  MATH  Google Scholar 

  29. Tian Z., Liu Y., Zhang A. M. et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method [J]. Computers and Fluids, 2018, 170: 41–52.

    Article  MathSciNet  MATH  Google Scholar 

  30. Benson D. J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2–3): 235–394.

    Article  MathSciNet  MATH  Google Scholar 

  31. Benson D. J., Okazawa S. Contact in a multi-material Eulerian finite element formulation [J]. Computer Methods in Applied mechanics and Engineering, 2004, 193(39–41): 4277–4298.

    Article  MATH  Google Scholar 

  32. Klaseboer E., Khoo B., Hung K. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 21(4): 395–412.

    Article  Google Scholar 

  33. Wang C., Khoo B. An indirect boundary element method for three-dimensional explosion bubbles [J]. Journal of Computational Physics, 2004, 194(2): 451–480.

    Article  MATH  Google Scholar 

  34. Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223.

    Article  MathSciNet  MATH  Google Scholar 

  35. Qiu J., Liu T., Khoo B. C. Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method [J]. Communications in Computational Physics, 2008, 3(2): 479–504.

    MathSciNet  MATH  Google Scholar 

  36. Zhang A. M., Cui P., Cui J. et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–160.

    Article  Google Scholar 

  37. Cui P., Zhang A. M., Wang S. P. et al. Experimental investigation of bubble dynamics near the bilge with a circular opening [J]. Applied Ocean Research, 2013, 41: 65–75.

    Article  Google Scholar 

  38. Blake J. R., Gibson D. Cavitation bubbles near boundaries [J]. Annual Review of Fluid Mechanics, 1987, 19(1): 99–123.

    Article  Google Scholar 

  39. Liu Y. L., Wang Q. X., Wang S. P. et al. The motion of a 3D toroidal bubble and its interaction with a free surface near an inclined boundary [J]. Physics of Fluids, 2016, 28(12): 122101.

    Article  Google Scholar 

  40. Khoo B., Klaseboer E., Hung K. A collapsing bubble-induced micro-pump using the jetting effect [J]. Sensors and Actuators A: Physical, 2005, 118(1): 152–161.

    Article  Google Scholar 

  41. Lew K. S. F., Klaseboer E., Khoo B. C. A collapsing bubble-induced micropump: An experimental study [J]. Sensors and Actuators A-physical, 2007, 133(1): 161–172.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Long Liu.

Additional information

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC0308900), the National Natural Science Foundation of China (Grant Nos. 51879050, 51925904).

Biography: Hao Tang (1995-), Male, Ph. D. candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Liu, YL., Cui, P. et al. Numerical study on the bubble dynamics in a broken confined domain. J Hydrodyn 32, 1029–1042 (2020). https://doi.org/10.1007/s42241-020-0078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0078-1

Key words

Navigation