Skip to main content
Log in

Numerical investigation on the drag force of a single bubble and bubble swarm

  • Special Column on 31th NCHD
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The bubble drag force correlation plays an important role in the numerical simulation accuracy of gas/liquid flows. In order to systematically investigate the interphase drag force of non-buoyancy driven bubbly flows, a dynamic-positioning body force (DPBF) method is developed in this study. It is proved that this method has an enough computation precision. Using this method, a series of direct numerical simulation (DNS) cases of a single bubble with low-intermediate Re(1Re ≤ 200) and a bubble swarm with low Re(5.6 ≤ Re ≤45) are carried out and the bubble drag coefficients are calculated. Based on all the DNS data, the drag correlations with dimensionless parameters (Re, We for a single bubble and Re, We, gas fraction for bubble swarm) are systematically investigated and reported in this paper, which can provide a reference to the development of drag force closure model for non-buoyancy driven bubbly flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tryggvason G., Scardovelli R., Zaleski S. Direct numerical simulations of gas-liquid multiphase flows [M]. Cambridge, UK: Cambridge University Press, 2011.

    MATH  Google Scholar 

  2. Torvik R., Svendsen H. F. Modelling of slurry reactors. A fundamental approach [J]. Chemical Engineering Science, 1990, 45(8): 2325–2332.

    Article  Google Scholar 

  3. Becker S., Sokolichin A., Eigenberger G. Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations [J]. Chemical Engineering Science, 1994, 49(24): 5747–5762.

    Article  Google Scholar 

  4. Zhang L., Zhang J., Deng J. Numerical investigation on the collapse of a bubble cluster near a solid wall [J]. Physical Review E, 2019, 99: 043108.

    Article  Google Scholar 

  5. Chen L., Zhang L., Peng X. et al. Influence of water quality on the tip vortex cavitation inception [J]. Physics of Fluids, 2019, 31(2): 023303.

    Article  Google Scholar 

  6. Zhao X. J., Zong Z. Jiang Y. C. et al. Numerical simualation of micro-bubble drag reduction of an axisymmetric body using OpenFOAM [J]. Journal of Hydrodynamics, 2019, 31(5): 900–910.

    Article  Google Scholar 

  7. Moore D. W. The boundary layer on a spherical gas bubble [J]. Journal of Fluid Mechanics, 1963, 16: 161–176.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mei R. W, Klausner J. F., Lawrence C. J. A note on the history force on a spherical bubble at finite Reynolds number [J]. Physics of Fluids, 1994, 6(1): 418–420.

    Article  MATH  Google Scholar 

  9. Grace J. Shapes and velocities of bubbles rising in infinite liquid [J]. Transactions of the Institution of Chemical Engineers, 1973, 51: 116–120.

    Google Scholar 

  10. Ishii M., Novak Z. Drag coefficient and relative velocity in bubbly, droplet or particulate flows [J]. AIChE Journal, 1979, 25(5): 843–855.

    Article  Google Scholar 

  11. Dijkhuizen W., Roghair I., Annaland M. V. S. et al. DNS of gas bubbles behaviour using an improved 3D front tracking model—Drag force on isolated bubbles and comparison with experiments [J]. Chemical Engineering Science, 2010, 65(4): 1415–1426.

    Article  Google Scholar 

  12. Tomiyama A., Kataoka I., Zun I. et al. Drag coefficients of single bubbles under normal and micro gravity conditions [J]. JSME International Journal Series B Fluids and Thermal Engineering, 1998, 41(2): 472–479.

    Article  Google Scholar 

  13. Lain S., Broder D., Sommerfeld M. Experimental and numerical studies of the hydrodynamics in a bubble column [J]. Chemical Engineering Science, 1999, 54(21): 4913–4920.

    Article  Google Scholar 

  14. Zhang D. Z., VanderHeyden W. B. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows [J]. International Journal of Multiphase Flow, 2002, 28(5): 805–822.

    Article  MATH  Google Scholar 

  15. Snyder M. R., Knio O. M., Katz J. et al. Statistical analysis of small bubble dynamics in isotropic turbulence [J]. Physics of Fluids, 2007, 19(6): 065108.

    Article  MATH  Google Scholar 

  16. Grevskott S., Sannaes B. H., Dudukovi. M. P. et al. Liquid circulation, bubble size distributions, and solids movement in two-and three-phase bubble columns [J]. Chemical Engineering Science, 1996, 51(10): 1703–1713.

    Article  Google Scholar 

  17. Roghair I., Lau Y. M., Deen N. G. et al. On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers [J]. Chemical Engineering Science, 2011, 66(14): 3204–3211.

    Article  Google Scholar 

  18. Roghair I., van Sint Annaland M., Kuipers H. J. A. M. Drag force and clustering in bubble swarms [J]. AIChE Journal, 2013, 59(5): 1791–1800.

    Article  Google Scholar 

  19. Rusche H., Issa R. I. The effect of voidage on the drag force on particles, droplets and bubbles in dispersed two-phase flow [C]. Japanese European Two-Phase Flow Meeting, Tshkuba, Japan, 2000.

    Google Scholar 

  20. Simonnet M., Gentric C., Olmos E. et al. Experimental determination of the drag coefficient in a swarm of bubbles [J]. Chemical Engineering Science, 2007, 62(3): 858–866.

    Article  Google Scholar 

  21. Ryskin G., Leal L. G. Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique [J]. Journal of Fluid Mechanics, 1984, 148: 1–17.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-ming Shao.

Additional information

Project supported by the State Key Program of National Natural Science of China (Grant No. 91852204), the National Natural Science Foundation of China (Grant No. 11772298).

Biography: Ling-xin Zhang (1978-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lx., Zhou, Zc. & Shao, Xm. Numerical investigation on the drag force of a single bubble and bubble swarm. J Hydrodyn 32, 1043–1049 (2020). https://doi.org/10.1007/s42241-020-0085-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0085-2

Key words

Navigation