Skip to main content
Log in

Hygrothermal forced vibration of a viscoelastic laminated plate with magnetostrictive actuators resting on viscoelastic foundations

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The article presents a vibration analysis of a laminated composite sandwich plate containing viscoelastic layers in the core and faces of the plate. The sandwich plate includes magnetostrictive actuating layers, rests on a three-parameter viscoelastic medium, and undergoes to hygrothermal environmental conditions and in-plane forces in \(x\) and \(y\) directions. The viscoelastic layers are considered as Kelvin–Voigt viscoelastic model. The partial differential equations system is deduced according to the dynamic version of the principle of virtual displacements and is based on a theory that accounts for the exponential distribution of transverse shear deformation. The analytical Navier’s solution type is obtained to investigate the parametric effect of the location of smart layers, lamination schemes, modes, the feedback gain control value, viscoelastic structural damping, thickness ratio, the aspect ratio, viscoelastic layer thickness-to-magnetostrictive layer thickness ratio, foundation, in-plane forces, temperature and moisture on vibration characteristics of the sandwich plate. The outcomes show that the deformation and vibration in the structure can be controlled by changing the smart layer position and value of the feedback gain control parameter as well as the studied system stability can be affected by the value of viscoelastic structural damping and foundation constants. Besides, the absorption of moisture in matrix material increases the deflection of structure and increases the damping time. The results of this study can contribute to the development of the design of smart structural applications, especially those that require foundations to support them and deal with their dynamic response as well as provide a reference framework for studies of the impacts of humid environments on such structures in the presence of in-plane forces, especially, in the applications subjected to various forces and environmental conditions. Many of these systems require foundations to support the structures and deal with their dynamic response such as civil and mechanical structural applications and the aerospace and aeronautical vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Akgoz, B., Civalek, O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Akgoz, B., Civalek, O.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos. Part B Eng. 129, 77–87 (2017)

    Article  Google Scholar 

  • Anjanappa, M., Bi, J.: Modelling, design and control of embedded Terfenol-D actuator. Smart Struct. Intel. Syst. 1917, 908–918 (1993)

    Google Scholar 

  • Anjanappa, M., Bi, J.: A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater. Struct. 1, 83–91 (1994a)

    Article  Google Scholar 

  • Anjanappa, M., Bi, J.: Magnetostrictive mini actuators for smart structural application. Smart Mater. Struct. 3, 383–390 (1994b)

    Article  Google Scholar 

  • Arefi, M., Zenkour, A.M.: Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets. Smart Mater. Struct. 25, 115040 (2016)

    Article  Google Scholar 

  • Attia, M.A., Mahmoud, F.F.: Analysis of viscoelastic Bernoulli-Euler nanobeams incorporating nonlocal and microstructure effects. Int. J. Mech. Mater. Des. 13(3), 385–406 (2017)

    Article  Google Scholar 

  • Bhattacharya, B., Vidyashankar, B.R., Patsias, S., Tomlinson, G.R.: Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc. SPIE Smart Struct. Mater. 4073, 204–214 (2000)

    Google Scholar 

  • Brischetto, S.: Hygrothermal loading effects in bending analysis of multilayered composite plates. Comput. Model. Eng. Sci. 88(5), 367–417 (2012)

    MathSciNet  MATH  Google Scholar 

  • Drozdov, A.D.: Viscoelastic structures: mechanics of growth and aging. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  • Ebrahimi, F., Barati, M.R., Civalek, O.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)

    Article  Google Scholar 

  • Ghosh, D.P., Gopalakrishnan, S.: Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Mater. Struct. 14(6), 1462–1473 (2005)

    Article  Google Scholar 

  • Hiller, M.W., Bryant, M.D., Umegaki, J.: Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J. Sound Vib. 134, 507–519 (1989)

    Article  Google Scholar 

  • Hong, C.C.: Transient responses of magnetostrictive plates without shear effects. Int. J. Eng. Sci. 47(3), 355–362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hong, C.C.: Transient responses of magnetostrictive plates by using the GDQ method. Eurp. J. Mech. A Solids 29(6), 1015–1021 (2010)

    Article  Google Scholar 

  • Koconis, D.B., Kollar, L.P., Springer, G.S.: Shape control of composite plates and shells with embedded actuators I: voltage specified. J. Compos. Mater. 28, 415–458 (1994)

    Article  Google Scholar 

  • Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int. J. Mech. Sci. 130, 534–545 (2017)

    Article  Google Scholar 

  • Kumar, J.S., Ganesan, N., Swarnamani, S., Padmanabhan, C.: Active control of beam with magnetostrictive layer. Comput. Struct. 81(13), 1375–1382 (2003)

    Article  Google Scholar 

  • Kumar, J.S., Ganesan, N., Swarnamani, S., Padmanabhan, C.: Active control of simply supported plates with a magnetostrictive layer. Smart Mater. Struct. 13(3), 487–492 (2004)

    Article  Google Scholar 

  • Lee, S.Y., Chou, C.J., Jang, J.L., Lin, J.S.: Hygrothermal effects on the linear and nonlinear analysis of symmetric angle-ply laminated plates. Compos. Struct. 21, 41–48 (1992)

    Article  Google Scholar 

  • Lee, S.J., Reddy, J.N., Rostamabadi, F.: Transient analysis of laminated composite plates with embedded smart-material layers. Fin. Elem. Anal. Des. 40, 463–483 (2004)

    Article  Google Scholar 

  • Lo, S.H., Zhen, W., Cheung, Y.K., Wanji, C.: Hygrothermal effects on multilayered composite plates using a refined higher order theory. Compos. Struct. 92, 633–646 (2010)

    Article  Google Scholar 

  • Murty, A.V.K., Anjanappa, M., Wu, Y.-F.: The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J. Sound Vib. 206(2), 133–149 (1997)

    Article  Google Scholar 

  • Patel, B.P., Ganapathi, M., Makhecha, D.P.: Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory. Compos. Struct. 56, 25–34 (2002)

    Article  Google Scholar 

  • Pradhan, S.C.: Vibration suppression of FGM shells using embedded magnetostrictive layers. Int. J. Solids Struct. 42, 2465–2488 (2005)

    Article  MATH  Google Scholar 

  • Pradhan, S.C., Ng, T.Y., Lam, K.Y., Reddy, J.N.: Control of laminated composite plates using magnetostrictive layers. Smart Mater. Struct. 10, 657–667 (2001)

    Article  Google Scholar 

  • Reddy, J.N.: Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  • Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Article  Google Scholar 

  • Reddy, J.N., Barbosa, J.I.: On vibration suppression of magnetostrictive beams. Smart Mater. Struct. 9, 49–58 (2000)

    Article  Google Scholar 

  • Santapuri, S., Scheidler, J.J., Dapino, M.J.: Two-dimensional dynamic model for composite laminates with embedded magnetostrictive materials. Compos. Struct. 132, 737–745 (2015)

    Article  Google Scholar 

  • Sereir, Z., Adda-Bedia, E.A., Tounsi, A.: Effect of temperature on the hygrothermal behavior of unidirectional laminated plates with asymmetrical environmental conditions. Compos. Struct. 72, 383–392 (2006)

    Article  Google Scholar 

  • Shaat, M.: Mode localization phenomenon of functionally graded nanobeams due to surface integrity. Int. J. Mech. Mater. Des. 15(2), 245–270 (2019)

    Article  Google Scholar 

  • Shankar, G., Kumar, S.K., Mahato, P.K.: Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin Walled Struct. 116, 53–68 (2017)

    Article  Google Scholar 

  • Sobhy, M., Zenkour, A.M.: Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos. Part B Eng. 154, 492–506 (2018)

    Article  Google Scholar 

  • Subramanian, P.: Vibration suppression of symmetric laminated composite beams. Smart Mater. Struct. 11(6), 880–885 (2002)

    Article  Google Scholar 

  • Suman, S.D., Hirwani, C.K., Chaturvedi, A., Panda, S.K.: Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conf. Ser. Mater. Sci. Eng. 178, 012026 (2017)

    Article  Google Scholar 

  • Upadhyay, A.K., Pandey, R., Shukla, K.K.: Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading. Commun. Nonlinear Sci. Numer. Simul. 15, 2634–2650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, Y., Gou, X.-F., Zhang, D.-G.: A one-dimension nonlinear hysteretic constitutive model with elasto-thermo-magnetic coupling for giant magnetostrictive materials. J. Magn. Magn. Mater. 441, 642–649 (2017)

    Article  Google Scholar 

  • Zenkour, A.M.: Bending analysis of piezoelectric exponentially graded fiber reinforced composite cylinders in hygrothermal environments. Int. J. Mech. Mater. Des. 13(4), 515–529 (2017)

    Article  Google Scholar 

  • Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J. Comput. Appl. Mech. 50(1), 69–75 (2019)

    Google Scholar 

  • Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J. Mater. Res. Technol. 9(3), 4727–4748 (2020a)

    Article  Google Scholar 

  • Zenkour, A.M., El-Shahrany, H.D.: Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch. Appl. Mech. 90, 1943–1959 (2020b)

    Article  Google Scholar 

  • Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl. Math. Mech. 41, 1269–1286 (2020c)

    Article  MATH  Google Scholar 

  • Zenkour, A.M., El-Shahrany, H.D.: Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin Walled Struct. 157, 107007 (2020d)

    Article  Google Scholar 

  • Zenkour, A.M., El-Shahrany, H.D.: Hygrothermal vibration of adaptive composite magnetostrictive laminates supported by elastic substrate medium. Euro. J. Mech. A Solids 85, 104140 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Zenkour, A.M., Radwan, A.F.: Analysis of multilayered composite plates resting on elastic foundations in thermal environment using a hyperbolic model. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2801–2816 (2017)

    Article  Google Scholar 

  • Zenkour, A.M., Radwan, A.F.: Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment. Arch. Civ. Mech. Eng. 20, 112 (2020)

    Article  Google Scholar 

  • Zenkour, A.M., Sobhy, M.: Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin–Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 229(1), 3–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Zhou, H., Zhou, Y.: Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech. Solida Sin. 28, 50–60 (2015)

    Article  Google Scholar 

  • Zhou, H.M., Zhou, Y.H.: Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater. Struct. 16(1), 198–206 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Zenkour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The coefficients \(\overline{Q}_{ij}^{\left( k \right)}\), \(\overline{q}_{ij}\), \(\tilde{\alpha }_{l}\) and \(\tilde{\beta }_{l} ,l = xx,yy, xy\) appeared in Eqs. (9), (10), (11) and Eq. (15) are expanded as

$$\overline{Q}_{11}^{\left( k \right)} = Q_{11}^{\left( k \right)} \cos^{4} \theta^{\left( k \right)} + 2\left( {Q_{12}^{\left( k \right)} + 2Q_{66}^{\left( k \right)} } \right)\cos^{2} \theta^{\left( k \right)} \sin^{2} \theta^{\left( k \right)} + Q_{22}^{\left( k \right)} \sin^{4} \theta^{\left( k \right)} ,$$
$$\overline{Q}_{12}^{\left( k \right)} = \left( {Q_{11}^{\left( k \right)} + Q_{22}^{\left( k \right)} - 4Q_{66}^{\left( k \right)} } \right)\cos^{2} \theta^{\left( k \right)} \sin^{2} \theta^{\left( k \right)} + Q_{12}^{\left( k \right)} \left( {\sin^{4} \theta^{\left( k \right)} + \cos^{4} \theta^{\left( k \right)} } \right),$$
$$\overline{Q}_{22}^{\left( k \right)} = Q_{11}^{\left( k \right)} \sin^{4} \theta^{\left( k \right)} + 2\left( {Q_{12}^{\left( k \right)} + 2Q_{66}^{\left( k \right)} } \right)\cos^{2} \theta^{\left( k \right)} \sin^{2} \theta^{\left( k \right)} + Q_{22}^{\left( k \right)} \cos^{4} \theta^{\left( k \right)} ,$$
$$\overline{Q}_{44}^{\left( k \right)} = Q_{44}^{\left( k \right)} \cos^{2} \theta^{\left( k \right)} + Q_{55}^{\left( k \right)} \sin^{2} \theta^{\left( k \right)} ,$$
$$\overline{Q}_{55}^{\left( k \right)} = Q_{55}^{\left( k \right)} \cos^{2} \theta^{\left( k \right)} + Q_{44}^{\left( k \right)} \sin^{2} \theta^{\left( k \right)} ,$$
$$\overline{Q}_{66}^{\left( k \right)} = \left( {Q_{11}^{\left( k \right)} + Q_{22}^{\left( k \right)} - 2Q_{12}^{\left( k \right)} - 2Q_{66}^{\left( k \right)} } \right)\sin^{2} \theta^{\left( k \right)} \cos^{2} \theta^{\left( k \right)} + Q_{66}^{\left( k \right)} \left( {\sin^{4} \theta^{\left( k \right)} + \cos^{4} \theta^{\left( k \right)} } \right),$$
$$Q_{11}^{\left( k \right)} = \frac{{E_{1} \left( {1 - \nu_{23}^{\left( k \right)} \nu_{32}^{\left( k \right)} } \right)}}{\Delta }, Q_{12}^{\left( k \right)} = \frac{{E_{1} \left( {\nu_{21}^{\left( k \right)} + \nu_{31}^{\left( k \right)} \nu_{23}^{\left( k \right)} } \right)}}{\Delta },$$
$$Q_{22}^{\left( k \right)} = \frac{{E_{2} \left( {1 - \nu_{13}^{\left( k \right)} \nu_{31}^{\left( k \right)} } \right)}}{\Delta },$$
$$Q_{44}^{\left( k \right)} = G_{23}^{\left( k \right)} , \quad Q_{55}^{\left( k \right)} = G_{13}^{\left( k \right)} , Q_{66}^{\left( k \right)} = G_{12}^{\left( k \right)} ,$$
$$\Delta = 1 - \nu_{21}^{\left( k \right)} \nu_{12}^{\left( k \right)} - \nu_{23}^{\left( k \right)} \nu_{32}^{\left( k \right)} - \nu_{13}^{\left( k \right)} \nu_{31}^{\left( k \right)} - 2\nu_{21}^{\left( k \right)} \nu_{13}^{\left( k \right)} \nu_{32}^{\left( k \right)} ,$$
$$\begin{aligned} &\nu_{21}^{\left( k \right)} = \frac{{\nu_{12}^{\left( k \right)} E_{22}^{\left( k \right)} }}{{E_{1}^{\left( k \right)} }},\quad \nu_{31}^{\left( k \right)} = \nu_{13}^{\left( k \right)} \frac{{E_{3}^{\left( k \right)} }}{{E_{1}^{\left( k \right)} }}, & \nu_{32}^{\left( k \right)} = \nu_{23}^{\left( k \right)} \frac{{E_{3}^{\left( k \right)} }}{{E_{2}^{\left( k \right)} }}, \end{aligned}$$
$$\begin{aligned} &\tilde{\alpha }_{xx} = \alpha_{xx} \cos^{2} \theta + \alpha_{yy} \sin^{2} \theta , & \tilde{\alpha }_{yy} = \alpha_{yy} \cos^{2} \theta + \alpha_{xx} \sin^{2} \theta , \end{aligned}$$
$$\tilde{\alpha }_{xy} = \left( {\alpha_{xx} - \alpha_{yy} } \right)\sin \theta \cos \theta ,$$
$$\tilde{\beta }_{xx} = \beta_{xx} \cos^{2} \theta + \beta_{yy} \sin^{2} \theta ,\quad \tilde{\beta }_{yy} = \beta_{yy} \cos^{2} \theta + \beta_{xx} \sin^{2} \theta ,$$
$$\tilde{\beta }_{xy} = \left( {\beta_{xx} - \beta_{yy} } \right)\sin \theta \cos \theta ,$$
$$\begin{aligned} \overline{q}_{31} = q_{31} \cos^{2} \theta + q_{32} \sin^{2} \theta , & \overline{q}_{32} = q_{32} \cos^{2} \theta + q_{31} \sin^{2} \theta , \end{aligned}$$
$$\begin{aligned} & \overline{q}_{14} = \left( {q_{15} - q_{24} } \right)\sin \theta \cos \theta ,& \overline{q}_{24} = q_{24} \cos^{2} \theta + q_{15} \sin^{2} \theta , \end{aligned}$$
$$\begin{aligned} &\overline{q}_{15} = q_{15} \cos^{2} \theta + q_{24} \sin^{2} \theta,\\ & \overline{q}_{25} = \left( {q_{15} - q_{24} } \right)\sin \theta \cos \theta , \end{aligned}$$
$$\overline{q}_{36} = \left( {q_{31} - q_{32} } \right)\sin \theta \cos \theta ,$$

where \(E_{i}\), \(v_{ij}\) and \(G_{ij}\) refer to Young’s moduli, Poisson’s ratios, and shear moduli, respectively. The coefficients \(\alpha_{ij}\) and \(\beta_{ij}\) are the thermal and hygroscopic expansion coefficients. The coefficients \(q_{ij}\) indicate the magnetostrictive modules.

Appendix 2

The coefficients \(\hat{S}_{ij}\), \(\hat{M}_{ij}\) and \(\hat{C}_{ij}\) (\(i = 1, 2, 3\)) appeared in Eq. (37) are expanded as the following

$$\begin{aligned} \hat{S}_{11} & = \left( {1 + \left. {g\frac{\partial }{\partial t}} \right|_{{k = {\text{viscoelastic}}}} } \right)\left[ {D_{11} \left( {\frac{n\pi }{a}} \right)^{4} + D_{22} \left( {\frac{m\pi }{b}} \right)^{4} + \left( {2D_{12} + 4D_{66} } \right)\left( {\frac{n\pi }{a}} \right)^{2} \left( {\frac{m\pi }{b}} \right)^{2} } \right] \\ & \quad + \left[ {K_{P} + F_{x} } \right]\left( {\frac{n\pi }{a}} \right)^{2} + \left[ {K_{P} + F_{y} } \right]\left( {\frac{m\pi }{b}} \right)^{2} + K_{W} , \\ \end{aligned}$$
$$\hat{S}_{12} = - \left( {1 + \left. {g\frac{\partial }{\partial t}} \right|_{{k = {\text{viscoelastic}}}} } \right)\left[ {E_{11}^{1} \left( {\frac{n\pi }{a}} \right)^{3} + \left( {E_{21}^{1} + 2E_{66}^{1} } \right)\frac{n\pi }{a}\left( {\frac{m\pi }{b}} \right)^{2} } \right],$$
$$\hat{S}_{13} = - \left( {1 + \left. {g\frac{\partial }{\partial t}} \right|_{{k = {\text{viscoelastic}}}} } \right)\left[ {E_{22}^{1} \left( {\frac{m\pi }{b}} \right)^{3} + \left( {E_{12}^{1} + 2E_{66}^{1} } \right)\left( {\frac{n\pi }{a}} \right)^{2} \frac{m\pi }{b}} \right],$$
$$\hat{S}_{22} = \left( {1 + \left. {g\frac{\partial }{\partial t}} \right|_{{k = {\text{viscoelastic}}}} } \right)\left[ {E_{11}^{3} \left( {\frac{n\pi }{a}} \right)^{2} + E_{66}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{55}^{3} } \right],$$
$$\hat{S}_{23} = \hat{S}_{23} = \left( {1 + \left. {g\frac{\partial }{\partial t}} \right|_{{k = {\text{viscoelastic}}}} } \right)\left[ {\left( {E_{12}^{3} + E_{66}^{3} } \right)\frac{n\pi }{a}\frac{m\pi }{b}} \right],$$
$$\hat{S}_{33} = \left( {1 + \left. {g\frac{\partial }{\partial t}} \right|_{{k = {\text{viscoelastic}}}} } \right)\left[ {E_{66}^{2} \left( {\frac{n\pi }{a}} \right)^{2} + E_{22}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{44}^{3} } \right],$$
$$\hat{M}_{11} = - \beta_{31} \left( {\frac{n\pi }{a}} \right)^{2} - \beta_{32} \left( {\frac{m\pi }{b}} \right)^{2} + c_{d} , \quad \hat{M}_{21} = \gamma_{31} \frac{n\pi }{a},\quad \hat{M}_{31} = \gamma_{32} \frac{m\pi }{b},$$
$$\hat{M}_{12} = \hat{M}_{13} = \hat{M}_{22} = \hat{M}_{23} = \hat{M}_{32} = \hat{M}_{33} = 0,$$
$$\hat{C}_{11} = I_{2} \left[ {\left( {\frac{n\pi }{a}} \right)^{2} + \left( {\frac{m\pi }{b}} \right)^{2} } \right] + I_{0} , \quad \hat{C}_{12} = - I_{e} \frac{n\pi }{a},\quad \hat{C}_{13} = - I_{e} \frac{m\pi }{b},$$
$$\hat{C}_{22} = I_{e}^{2} ,\quad \hat{C}_{23} = 0,\quad \hat{C}_{33} = I_{e}^{2} .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Shahrany, H.D. Hygrothermal forced vibration of a viscoelastic laminated plate with magnetostrictive actuators resting on viscoelastic foundations. Int J Mech Mater Des 17, 301–320 (2021). https://doi.org/10.1007/s10999-020-09526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09526-6

Keywords

Navigation