Skip to main content

Advertisement

Log in

Sustainable building technology: thermal control of solar energy to cool and heat the building naturally

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A sustainable building design technology is being proposed to heat and cool inside the building naturally by using exterior curtain wall to control the solar energy. Simply, the thermal state of photon is being controlled by inducing Bose–Einstein (BE) discrete photon mechanics and Higgs bosons (H → γγ¯) electro-quantum charge application to cool and heat the building naturally by its exterior curtain wall. Thus, in this research to cool the building naturally, helium (He)-aided curtain wall is being utilized to capture the solar energy to cool the photons by employing Bose–Einstein (BE) photonic band gap in order to form a cooling-state photon. Here, this cooling-state photon is named as the Hossain Cooling Photon (HcP¯) which is actively functioned to cool the building by the process of photonic thermodynamics. When needed this HcP¯ can be reformed into a heating-state photon here denoted as Hossain Thermal Photon (HtP¯), which is created by Higgs bosons (H → γγ¯) electro-magnetic quantum empowered by a single-diode semiconductor to heat the building naturally. It is because of the Higgs bosons (H → γγ¯) quantum which is being instigated through the extreme low-range weak force which regulates the HcP¯ quantum to get agitated in order to convert it into heating state photon of HtP¯. The formation of HcP¯ and the reformation of HtP¯ have been confirmed by the use of set of computational mathematics. Interestingly the results revealed that the feasibility of reformation of photons (HcP¯ and HtP¯) is positively doable into the exterior curtain wall to cool and heat the building naturally which indeed world be an innovative technology for sustainable building science to mitigate global energy and environmental vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

B-E :

Bose–Einstein

BR(H → γγ¯) :

Higgs boson quantum

CO 2 :

Carbon dioxide

CFCs :

Chlorofluorocarbons

DOS :

Density of states (DOS) of the photons

EM :

Electromagnetic field

HcP¯ :

Hossain cooling photon

He :

Helium

HtP¯ :

Hossain thermal photon

IV :

Current–voltage

PB :

Photonic band

PBE :

Photonic band edge

PBG :

Photonic band gap

PDOS :

Projected density of state

PV :

Photovoltaic

q = 1.6 × 10 −19 C :

Photon charge

QED :

Quantum electrodynamics

UV :

Ultraviolet

References

  • Adwek, G., Boxiong, S., Ndolo, P. O., Siagi, Z. O., Chepsaigutt, C., Kemunto, C. M., et al. (2020). The solar energy access in Kenya: A review focusing on Pay-As-You-Go solar home system. Environment, Development and Sustainability, 22, 3897–3938.

    Article  Google Scholar 

  • Agger, A. K., & Sørensen, A. H. (1997). Atomic and molecular structure and dynamics. Physical Review A, 55, 402–413.

    Article  CAS  Google Scholar 

  • Agrawal, H., & Yadav, A. (2020). A Scheffler solar concentrator heat transfer model used in forced-circulation ice melting system at high-altitude regions. Environment, Development and Sustainability, 2020, 1–23.

    Google Scholar 

  • Baur, G., Hencken, K., & Trautmann, D. (2007). Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Physics Reports, 453, 1–27.

    Article  CAS  Google Scholar 

  • Baur, G., Hencken, K., Trautmann, D., Sadovsky, S., & Kharlov, Y. (2002). Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Physics Reports, 364, 359–450.

    Article  CAS  Google Scholar 

  • Becker, U., Grün, N., & Scheid, W. (1987). K-shell ionisation in relativistic heavy-ion collisions. Journal of Physics B: Atomic and Molecular Physics, 20, 2075.

    Article  CAS  Google Scholar 

  • Boettcher, I., Pawlowski, J. M., & Diehl, S. (2012). Ultracold atoms and the functional renormalization group. Nuclear Physics B-Proceedings Supplements, 228, 63–135.

    Article  CAS  Google Scholar 

  • Cardoso, V. (2004). Quasinormal modes of Schwarzschild black holes in four and higher dimensions. Physical Review D, 69, 044004.

    Article  Google Scholar 

  • Celik, A. N., & Acikgoz, N. (2007). Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Applied Energy, 84, 1–15.

    Article  CAS  Google Scholar 

  • Dabra, V., & Yadav, A. (2020). Performance analysis and comparison of glazed and unglazed solar air collector. Environment, Development and Sustainability, 22, 863–881.

    Article  Google Scholar 

  • De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80, 78–88.

    Article  Google Scholar 

  • Dobrynina, A., Kartavtsev, A., & Raffelt, G. (2015). Photon-photon dispersion of TeV gamma rays and its role for photon-ALP conversion. Physical Review D, 91, 083003.

    Article  Google Scholar 

  • Douglas, J. S., Habibian, H., Hung, C.-L., Gorshkov, A. V., Kimble, H. J., & Chang, D. E. (2015). Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9, 326–331.

    Article  CAS  Google Scholar 

  • Eichler, J., & Stöhlker, T. (2007). Radiative electron capture in relativistic ion-atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Physics Reports, 439, 1–99.

    Article  CAS  Google Scholar 

  • Fernández, J. (2009). Electron and ion angular distributions in resonant dissociative photoionization using linearly polarized light. New Journal of Physics, 11, 043020.

    Article  Google Scholar 

  • Guo, Y., Al-Jubainawi, A., & Ma, Z. (2018). Performance investigation and optimisation of electrodialysis regeneration for LiCl liquid desiccant cooling systems. Applied Thermal Engineering, 149, 1023–1034.

    Article  Google Scholar 

  • Hencken, K., Baur, G., & Trautmann, D. (2006). Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions. Physical Review Letter, 96, 012303.

    Article  Google Scholar 

  • Hossain, M. F. (2017). Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. Journal of Building Engineering., 9, 147–154.

    Article  Google Scholar 

  • Hossain, M. F. (2017). Green science: Advanced building design technology to mitigate energy and environment. Renewable and Sustainable Energy Reviews., 81, 3051–3060.

    Article  Google Scholar 

  • Hossain, M. F. (2017). Solar energy integration into advanced building design for meeting energy demand and environment problem. International Journal of Energy Research, 17(2016), 49–55.

    Article  Google Scholar 

  • Hossain, M. F. (2017). Green science: Independent building technology to mitigate energy, environment, and climate change. Renewable and Sustainable Energy Reviews., 73, 695–705.

    Article  Google Scholar 

  • Hossain, M. F. (2018). Photon energy amplification for the design of a micro PV panel. International Journal of Energy Research. https://doi.org/10.1002/er.4118.

    Article  Google Scholar 

  • Hossain, M. F. (2019). Green technology: Transformation of transpiration vapor to mitigate global water crisis. Polytechnica. https://doi.org/10.1007/s41050-019-00009-y.Polytechnica.

    Article  Google Scholar 

  • Hossain, M. F. (2019). Sustainable technology for energy and environmental benign building design. Journal of Building Engineering, 22, 130–139.

    Article  Google Scholar 

  • Hossain, M. F. (2019). Transforming dark photons into sustainable energy. International Journal of Energy and Environmental Engineering., 9, 99–110.

    Article  Google Scholar 

  • Hossain, M. F. (2020). Application of wind energy into the transportation sector. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00235-1.

    Article  Google Scholar 

  • Hossain, M. F. (2020). Modeling of global temperature control. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00924-6.

    Article  Google Scholar 

  • Langer, L., Poltavtsev, S. V., Yugova, I. A., Salewski, M., Yakovlev, D. R., Karczewski, G., et al. (2014). Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nature Photonics, 8, 851–857.

    Article  CAS  Google Scholar 

  • Li, Q., Xu, D. Z., Cai, C. Y., & Sun, C. P. (2013). Recoil effects of a motional scatterer on single-photon scattering in one dimension. Science Reports, 3, 1–6.

    Google Scholar 

  • Lim, L. H. I., Ye, Z., Ye, J., Yang, D., & Du, H. (2015). A linear identification of diode models from single $I$– $V$ characteristics of PV panels. IEEE Transactions on Industrial Electronics, 62, 4181–4193.

    Article  Google Scholar 

  • Martin, F. (2007). Single photon-induced symmetry breaking of H2 dissociation. Science, 315, 629–633.

    Article  CAS  Google Scholar 

  • Nain, S., Kajal, S., & Parinam, A. (2020). Thermal performance of desiccant-based solar air-conditioning system with silica gel coating. Environment, Development and Sustainability, 22, 281–296.

    Article  Google Scholar 

  • Najjari, B., Voitkiv, A. B., Artemyev, A., & Surzhykov, A. (2009). Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Physical Review A, 80, 012701.

    Article  Google Scholar 

  • Pregnolato, T., Lee, E. H., Song, J. D., Stobbe, S., & Lodahl, P. (2015). Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 6, 8655.

    Article  Google Scholar 

  • Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K. J., Hu, E. L., & Imamoğlu, A. (2012). Strongly correlated photons on a chip. Nature Photonics, 6, 93–96.

    Article  CAS  Google Scholar 

  • Robert, S., & Czarnecki, A. (2016). High-energy electrons from the muon decay in orbit: Radiative corrections. Physics Letters B, 753, 61–64.

    Article  Google Scholar 

  • Tame, M. S., McEnery, K. R., Özdemir, ŞK., Lee, J., Maier, S. A., & Kim, M. S. (2013). Quantum plasmonics. Nature Physics, 9, 329–340.

    Article  CAS  Google Scholar 

  • Tan, Y. T., Kirschen, D. S., & Jenkins, N. (2004). A model of PV generation suitable for stability analysis. IEEE Transactions on Energy Conversion, 19, 748–755.

    Article  Google Scholar 

  • Tu, M. W. Y., & Zhang, W. M. (2008). Non-Markovian decoherence theory for a double-dot charge qubit. Physical Review B, 78, 235311.

    Article  Google Scholar 

  • Xiao, Y. F., Li, M., Liu, Y. C., Li, Y., Sun, X., & Gong, Q. (2010). Asymmetric Fano resonance analysis in indirectly coupled microresonators. Physical Review A, 82, 065804.

    Article  Google Scholar 

  • Yan, W. B., & Fan, H. (2014). Single-photon quantum router with multiple output ports. Science Reports, 4, 4820.

    Article  Google Scholar 

  • Yang, L., Wang, S., Zeng, Q., Zhang, Z., Pei, T., Li, Y., & Peng, L. M. (2011). Efficient photovoltage multiplication in carbon nanotubes. Nature Photonics, 5, 672–676.

    Article  CAS  Google Scholar 

  • Zhang, W. M., Lo, P. Y., Xiong, H. N., Tu, M. W. Y., & Nori, F. (2012). General non-markovian dynamics of open quantum systems. Physical Review Letters, 109, 170402.

    Article  Google Scholar 

  • Zhu, Y., Hu, X., Yang, H., & Gong, Q. (2014). On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Science Reports, 4, 3752.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Green Globe Technology under grant RD-02019-06 for building a better environment. Any findings, predictions, and conclusions described in this article are solely performed by the author, and it is confirmed that there is no conflict of interest for publishing this research paper in a suitable journal. This research does not involve Human Participants and/or Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Faruque Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.F. Sustainable building technology: thermal control of solar energy to cool and heat the building naturally. Environ Dev Sustain 23, 13304–13323 (2021). https://doi.org/10.1007/s10668-020-01212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01212-z

Keywords

Navigation