Skip to main content

Advertisement

Log in

Preparation of CdSe/NH2-MIL-101(Cr) Nanocomposites with Improved Photocatalytic Hydrogen Production Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, novel CdSe/NH2-MIL-101(Cr) nanocomposites for photocatalytic hydrogen production were synthesized. When the prepared NH2-MIL-101(Cr) MOFs were modified with CdSe QDs, the photocatalytic hydrogen production amount was significantly increased and reached to 17,664 μmol g−1 in 7 h. The formation of CdSe/NH2-MIL-101(Cr) nanocomposites enhanced the light absorption intensity, broadened the visible light absorption range, promoted the transfer of photogenerated electrons and inhibited the recombination of photogenerated electron–hole pairs, then effectively improved the photocatalytic hydrogen production performance. In addition, the CdSe/NH2-MIL-101(Cr) nanocomposites exhibited high cycle stability, which was beneficial to the practical application in photocatalytic hydrogen production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cho JS, Jung YK, Lee JK (2012) Kinetic studies on the formation of various II-VI semiconductor nanocrystals and synthesis of gradient alloy quantum dots emitting in the entire visible range. J Mater Chem 22:10827–10833

    Article  CAS  Google Scholar 

  2. Pan AL, Liu RB, Sun MH, Ning CZ (2010) Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4:671–680

    Article  CAS  PubMed  Google Scholar 

  3. Protière M, Reiss P (2007) Highly luminescent Cd1xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range. Small 3:399–403

    Article  PubMed  CAS  Google Scholar 

  4. Xu J, Qi Y, Wang C, Wang L (2018) NH2-MIL-101(Fe)/Ni(OH)2-derived C, N-codoped Fe2P/Ni2P cocatalyst modified g-C3N4 for enhanced photocatalytic hydrogen evolution from water splitting. Appl Catal B Environ 241:178–186

    Article  CAS  Google Scholar 

  5. Zhao XX, Feng JR, Liu JW, Lu J, Shi W, Yang GM, Wang GC, Feng PY, Cheng P (2018) Metal-organic framework-derived ZnO/ZnS heteronano structures for efficient visible light driven photocatalytic hydrogen production. Adv Sci 5:1700590–1700598

    Article  CAS  Google Scholar 

  6. Zhai HS, Liu XL, Wang P, Huang BB, Zhang QQ (2018) Enhanced photocatalytic H2 production of Mn0.5Cd0.5S solid solution through loading transition metal sulfides XS (X = Mo, Cu, Pd) cocatalysts. Appl Surf Sci 430:515–522

    Article  CAS  Google Scholar 

  7. Yu DB, Shao Q, Song QJ, Cui JW, Zhang YL, Wu B, Ge L, Wang Y, Zhang Y, Qin YQ, Vajtai R, Ajayan PM (2020) A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat Commun 11:1–10

    CAS  Google Scholar 

  8. Fang X, Zong BY, Mao S (2018) Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett 10:1–19

    Article  CAS  Google Scholar 

  9. Sun LL, Yun YP, Sheng HT, Du YX, Ding YM, Wu P, Li P, Zhu MZ (2018) Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J Mater Chem A 6:15371–15376

    Article  CAS  Google Scholar 

  10. Zhu YF, Qiu XY, Zhao SL, Guo J, Zhang XF, Zhao WS, Zhao YN, Tang ZY (2020) Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res 13:1928–1932

    Article  CAS  Google Scholar 

  11. Mohamed NM, Bashiri R, ShahidKait MUCF, Sufian S (2018) Potential application of metal-organic frameworks for photocatalytic water splitting. J Phys Conf Ser 1123:012055

    Article  CAS  Google Scholar 

  12. Wen MC, Mori K, Kuwahara Y, An T, Yamashita H (2017) Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B 218:555–569

    Article  CAS  Google Scholar 

  13. Li S, Mei HM, Yao SL, Chen ZY, Lu YL, Zhang L, Su CY (2019) Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal-organic frameworks: synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chem Sci 10:10577–10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan YM, Sun ZQ, Meng H, Han YD, Wu JB, Xu Y, Zhang X (2020) Aminated metal-organic framework (NH2-MIL-101(Cr)) incorporated polyvinylidene (PVDF) hybrid membranes: synthesis and application in efficient removal of Congo red from aqueous solution. Appl Organomet Chem 34:e5281

    Article  CAS  Google Scholar 

  15. Li XY, Pi YH, Xia QB, Li Z, Xiao J (2016) TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB. Appl Catal B Environ 191:192–201

    Article  CAS  Google Scholar 

  16. Lu J, Wu JK, Jiang Y, Tan P, Zhang L, Lei Y, Liu XQ, Sun LB (2020) Fabrication of microporous metal-organic frameworks in uninterrupted mesoporous tunnels: hierarchical structure for efficient trypsin immobilization and stabilization. Angew Chem Int Ed Engl 59:6428–6434

    Article  CAS  PubMed  Google Scholar 

  17. Llewellyn PL, Bourrelly S, Serre C, Filinchuk Y, Férey G (2006) How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed Engl 118:7915–7918

    Article  Google Scholar 

  18. Wakaoka T, Hirai K, Murayama K, Takano Y, Takagi H, Furukawa S, Kitagawa S (2014) Confined synthesis of CdSe quantum dots in the pores of metal-organic frameworks. J Mater Chem C 2:7173–7175

    Article  CAS  Google Scholar 

  19. Zhu YP, Yin J, Abou-hamad E, Liu XK, Chen W, Yao T, Mohammed OF, Alshareef HN (2020) Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv Mater 32:1906368

    Article  CAS  Google Scholar 

  20. Su Y, Ao D, Liu H, Wang Y (2017) MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J Mater Chem A 5:8680–8689

    Article  CAS  Google Scholar 

  21. Lin R, Shen LJ, Ren ZY, Wu WM, Tan YX, Fu HR, Zhang J, Wu L (2014) Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chem Commun 50:8533–8353

    Article  CAS  Google Scholar 

  22. Kim MR, Park SY, Jang DJ (2010) Composition variation and thermal treatment of ZnxCd1-xS alloy nanoparticles to exhibit controlled and efficient luminescence. J Phys Chem C 114:6452–6457

    Article  CAS  Google Scholar 

  23. Chen ZH, Peng WQ, Zhang K, Zhang J, Yanagida M, Han LY (2012) Surface ion transfer growth of ternary CdS1xSex quantum dots and their electron transport modulation. Nanoscale 4:7690–7697

    Article  CAS  PubMed  Google Scholar 

  24. Liu SY, Zhang H, Qiao Y, Su XG (2012) One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Adv 2:819–825

    Article  CAS  Google Scholar 

  25. Hsieh PY, Kameyama T, Takiyama T, Masuoka K, Yamamoto T, Hsu YJ, Torimoto T (2020) Controlling the visible-light driven photocatalytic activity of alloyed ZnSe-AgInSe2 quantum dots for hydrogen production. J Mater Chem A 8:13142–13149

    Article  CAS  Google Scholar 

  26. Li ZJ, Wang JJ, Li XB, Fan XB, Meng QY, Feng K, Chen B, Tung CH, Wu LZ (2013) An exceptional artificial photocatalyst, Nih-CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. Adv Mater 25:6613–6618

    Article  CAS  PubMed  Google Scholar 

  27. Yu WL, Noureldine D, Isimjan T, Lin B, Gobbo SD, Abulikemu M, Hedhili MN, Anjum DH, Takanabe K (2015) Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry. Phys Chem Chem Phys 17:1001–1009

    Article  CAS  PubMed  Google Scholar 

  28. Li ZJ, Li XB, Wang JJ, Yu S, Li CB, Tung CH, Wu LZ (2013) A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ Sci 6:465–469

    Article  CAS  Google Scholar 

  29. Li XB, Liu B, Wen M, Gao YJ, Wu HL, Huang MY, Li ZJ, Chen B, Tung CH, Wu LZ (2016) Hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy. Adv Sci 3:1500282–1500287

    Article  CAS  Google Scholar 

  30. Shi R, Cao YH, Bao YJ, Zhao YF, Waterhouse GIN, Fang ZY, Wu LZ, Tung CH, Yin YD, Zhang TR (2017) Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv Mater 29:1700803

    Article  CAS  Google Scholar 

  31. Selopal GS, Zhao HG, Tong X, Benetti D, Navarro-Pardo F, Zhou YF, Barba D, Vidal F, Wang ZM, Rosei F (2017) Highly stable colloidal “giant” quantum dots sensitized solar cells. Adv Funct Mater 27:1701468

    Article  CAS  Google Scholar 

  32. Wu T, Liu X, Liu Y, Cheng M, Liu ZF, Zeng GM, Shao BB, Liang QH, Zhang W, He QY, Zhang W (2020) Application of QD-MOF composites for photocatalysis: energy production and environmental remediation. Coord Chem Rev 403:213097

    Article  CAS  Google Scholar 

  33. Edwards EH, Fertig AA, McClelland KP, Meidenbauer MT, Chakraborty S, Krauss TD, Bren KL, Matson EM (2020) Enhancing the activity of photocatalytic hydrogen evolution from CdSe quantum dots with a polyoxovanadate cluster. Chem Commun 56:8762–8765

    Article  CAS  Google Scholar 

  34. Liu X, Wen DL, Liu Z, Wei J, Bu DL, Huang SM (2020) Thiocyanate-capped CdSe@Zn1-XCdXS gradient alloyed quantum dots for efficient photocatalytic hydrogen evolution. Chem Eng J 402:126178

    Article  CAS  Google Scholar 

  35. Raziq F, Hayat A, Humayun M, Mane SKB, Faheem MB, Ali A, Zhao Y, Han SB, Cai C, Li W, Qi DC, Yi JB, Yu XJ, Breese MBH, Hassan F, Ali F, Mavlonov A, Dhanabalan K, Xiang X, Zu XT, Li S, Qiao L (2020) Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Appl Catal B Environ 270:118867

    Article  CAS  Google Scholar 

  36. Wang K, Li N, Zhang J, Zhang ZQ, Dang FQ (2016) Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities. Biosens Bioelectron 87:339–344

    Article  PubMed  CAS  Google Scholar 

  37. Li ZJ, Fan XB, Li XB, Li JX, Zhan F, Tao Y, Zhang XY, Kong QY, Zhao NJ, Zhang JP, Ye C, Gao YJ, Wang XZ, Meng QY, Feng K, Chen B, Tung CH, Wu LZ (2017) Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. J Mater Chem A 5:10365–10373

    Article  CAS  Google Scholar 

  38. Hao XQ, Jin ZL, Yang H, Lu GX, Bi YP (2017) Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B Environ 210:45–56

    Article  CAS  Google Scholar 

  39. Han JS, Dai FX, Liu Y, Zhao RY, Wang L, Feng SH (2019) Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity. Appl Surf Sci 467–468:1033–1039

    Article  CAS  Google Scholar 

  40. Han JS, Liu Y, Dai FX, Zhao RY, Wang L (2018) Fabrication of CdSe/CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Appl Surf Sci 459:520–526

    Article  CAS  Google Scholar 

  41. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  42. Xie F, Zhang N, Zhuo LH, Qin PL, Chen SS, Wang YF (2019) “MOF-cloth” formed via supramolecular assembly of NH2-MIL-101(Cr) crystals on dopamine modified polyimide fiber for high temperature fume paper-based filter. Compos Part B 168:406–412

    Article  CAS  Google Scholar 

  43. Yu B, Wang XQ, Qi F, Zheng BJ, He JR, Lin J, Zhang WL, Li YR, Chen YF (2017) Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl Mater Interfaces 9:7154–7159

    Article  CAS  PubMed  Google Scholar 

  44. Song DY, Wang HQ, Wang XQ, Yu B, Chen YF (2017) NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 254:230–237

    Article  CAS  Google Scholar 

  45. Chen Q, Zhang J, Lu JQ, Liu H (2019) Noble metal-free NiSe2 nanosheets decorated MIL-53(Fe) microrods with highly efficient visible-light driven photocatalytic H2 generation. Int J Hydrogen Energy 44:16400–16410

    Article  CAS  Google Scholar 

  46. Liu H, Zhang J, Ao D (2018) Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Appl Catal B Environ 221:433–442

    Article  CAS  Google Scholar 

  47. Wang H, Yuan XZ, Wu Y, Zeng GM, Chen XH, Leng LJ, Wu ZB, Jiang LB, Li H (2015) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J Hazard Mater 286:187–194

    Article  CAS  PubMed  Google Scholar 

  48. Zhang ZZ, Huang L, Zhang JJ, Wang FJ, Xie YY, Shang XT, Gu YY, Zhao HB, Wang XX (2018) In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl Catal B Environ 233:112–119

    Article  CAS  Google Scholar 

  49. Nguyen AT, Lin WH, Lu YH, Chiou YD, Hsu YJ (2014) First demonstration of rainbow photocatalysts using ternary Cd1-xZnxSe nanorods of varying compositions. Appl Catal A Gen 476:140–147

    Article  CAS  Google Scholar 

  50. Zhang N, Chen D, Cai BC, Wang S, Niu F, Qin LS, Huang YX (2017) Facile synthesis of CdSe-ZnWO4 composite photocatalysts for efficient visible light driven hydrogen evolution. Int J Hydrogen Energy 42:1962–1969

    Article  CAS  Google Scholar 

  51. Wang SB, Guan BY, Lou XWD (2018) Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J Am Chem Soc 140:5037–5040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [Grant Numbers 52003136, 51772162, 51703112], the Taishan Scholars program, Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering [Grant Numbers XTCXQN18].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyang Zhao or Lei Wang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Wang, Y., Liu, Y. et al. Preparation of CdSe/NH2-MIL-101(Cr) Nanocomposites with Improved Photocatalytic Hydrogen Production Performance. Catal Lett 151, 2560–2569 (2021). https://doi.org/10.1007/s10562-020-03526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03526-z

Keywords

Navigation