Skip to main content

Advertisement

Log in

Psychrophilic enzymes: structural adaptation, pharmaceutical and industrial applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Psychrophiles are cold-living microorganisms synthesizing enzymes that are permanently active at almost near-zero temperatures. Psychrozymes are supposed to be structurally more flexible than their homologous proteins. This structural flexibility enables these proteins to undergo conformational changes during catalysis and improve catalytic efficiency at low temperatures. The outstanding characteristics of the psychrophilic enzymes have attracted the attention of the scientific community to utilize them in a wide variety of industrial and pharmaceutical applications. In this review, we first highlight the current knowledge of the cold-adaptation mechanisms of the psychrophiles. In the sequel, we describe the potential applications of the enzymes in different biotechnological processes specifically, in the production of industrial and pharmaceutical products.

Key points

Methods that organisms have evolved to survive and proliferate at cold environments.

The economic benefits due to their high activity at low and moderate temperatures.

Applications of the psychrophiles in biotechnological and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications. Biotechnol 11(3):100–118

    CAS  Google Scholar 

  • Balabanova LA, Bakunina IY, Nedashkovskaya OI, Makarenkova ID, Zaporozhets TS, Besednova NN, Zvyagintseva TN, Rasskazov VA (2010) Molecular characterization and therapeutic potential of a marine bacterium Pseudoalteromonas sp. KMM 701 alpha-galactosidase. Mar Biotechnol (NY) 12(1):111–120

    CAS  Google Scholar 

  • Banerjee R, Halder A, Natta A (2016) Psychrophilic microorganisms: habitats and exploitation potentials. Eur J Biotechnol Biosci 4(3):16–24

    Google Scholar 

  • Bidmanova S, Chaloupkova R, Damborsky J, Prokop Z (2010) Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons. Anal Bioanal Chem 398(5):1891–1898

    CAS  PubMed  Google Scholar 

  • Brault G, Shareck F, Hurtubise Y, Lépine F, Doucet N (2012) Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3 (2). PLoS One 7(3):e32041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno S, Coppola D, di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17(10). https://doi.org/10.3390/md17100544

  • Celik A, Yetis G (2012) An unusually cold active nitroreductase for prodrug activations. Bioorg Med Chem 20(11):3540–3550

    CAS  PubMed  Google Scholar 

  • Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 103:2857–2871

    CAS  PubMed  Google Scholar 

  • Drienovska I, Chovancova E, Koudelakova T, Damborsky J, Chaloupkova R (2012) Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium. Appl Environ Microbiol 78(14):4995–4998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte AWF, Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Junior AP, Sette LD (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38(4):600–619

    CAS  PubMed  Google Scholar 

  • Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2(1):15–26

    PubMed  PubMed Central  Google Scholar 

  • Furhan J (2020) Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: recent overview. J Genet Eng Biotechnol 18:36

    PubMed  PubMed Central  Google Scholar 

  • Gotor-Fernández V, Brieva R, Gotor V (2006) Lipases: Useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B Enzym 40(3–4):111–120

  • Hamdan A (2018) Psychrophiles: ecological significance and potential industrial application. South Afr J Sci 114(5–6)

  • Hamid B, Benazir BI (2015) Cold-active α-amylase from psychrophilic and psychrotolerant yeast. J Global. Biosci 4(7):2670–2677

    Google Scholar 

  • Jabeen F, Qazi J (2014) Potential of bacterial chitinases and exopolysaccharides for enhancing shelf life of food commodities at varying conditions. Intl Res J Environ Sci 3:87–93

    CAS  Google Scholar 

  • Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. Am Sci Res J Eng Technol Sci 23(1):103–120

    Google Scholar 

  • Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol 51(6):572–579

    CAS  PubMed  Google Scholar 

  • Kashif A, Tran LH, Jand SH, Lee CW (2017) Roles of active-site aromatic residues in cold adaptation of Sphingomonas glacialis Esterase EstSP1. ACS Omega 2(12):8760–8769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha M (2016) Cold active lipases–an update. Front Life Sci 9(3):226–238

    CAS  Google Scholar 

  • Kuddus M (2018) Cold-active enzymes in food biotechnology: an updated mini review. J App Biol Biotech 6:58–63

    CAS  Google Scholar 

  • Kuddus M, Roohi AJ, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnol 10(3):246–258

    CAS  Google Scholar 

  • Michaux C, Massant J, Kerff F, Frere JM, Docquier JD, Vandenberghe I, Samyn B, Pierrard A, Feller G, Charlier P, Van Beeumen J, Wouters J (2008) Crystal structure of a cold-adapted class C beta-lactamase. FEBS J 275(8):1687–1697

    CAS  PubMed  Google Scholar 

  • Mohammadi S, Parvizpour S, Razmara J, Bakar FDA, Illias RM, Mahadi NM, Murad AM (2018) Structure prediction of a novel Exo-β-1, 3-Glucanase: insights into the cold adaptation of psychrophilic yeast Glaciozyma antarctica PI12. Interdiscip Sci 10(1):157–168

    CAS  PubMed  Google Scholar 

  • Otto RT, Scheib H, Bornscheuer UT, Pleiss J, Syldatk C, Schmid RD (2000) Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids. J Mol Catal B Enzym 8(4-6):201–211

    CAS  Google Scholar 

  • Paredes DI, Watters K, Pitman DJ, Bystroff C, Dordick JS (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11:42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Lee CW, Kim D, Do H, Han SJ, Kim JE, Koo B-H, Lee JH, Yim JH (2018) Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS One 13(2):e0191740

    PubMed  PubMed Central  Google Scholar 

  • Parvizpour S, Razmara J, Ramli AN, Md Illias R, Shamsir MS (2014) Structural and functional analysis of a novel psychrophilic beta-mannanase from Glaciozyma antarctica PI12. J Comput Aided Mol Des 28(6):685–698

    CAS  PubMed  Google Scholar 

  • Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM (2015) Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis. J Mol Model 21(3):63

    PubMed  Google Scholar 

  • Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM (2017) The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. J Biomol Struct Dyn 35(8):1685–1692

    CAS  PubMed  Google Scholar 

  • Parvizpour S, Razmara J, Shamsir MS (2018) Temperature adaptation analysis of a psychrophilic mannanase through structural, functional and molecular dynamics simulation. Mol Simul 44(15):1270–1277

    CAS  Google Scholar 

  • Pinto CT, Nano FE (2015) Stable, temperature-sensitive recombinant strain of Mycobacterium smegmatis generated through the substitution of a psychrophilic ligA gene. FEMS Microbiol Lett 362(18):fnv152. https://doi.org/10.1093/femsle/fnv152

    Article  CAS  PubMed  Google Scholar 

  • Pulicherla K, Ghosh M, Kumar P, Sambasiva Rao K (2011) Psychrozymes-the next generation industrial enzymes. J Marine Sci Res Development 1:2

    Google Scholar 

  • Qiu H, Li Z, Wang H, Zhang H, Li S, Luo X, Song Y, Wang N, He H, Zhou H (2017) Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil. Biotechnol Equip 31(5):955–963

    CAS  Google Scholar 

  • Ramana K, Singh L, Dhaked R (2000) Biotechnological application of psychrophiles and their habitat to low-temperature. Environ Technol 59(2):87–101

    CAS  Google Scholar 

  • Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Factories 10(1):94

    CAS  Google Scholar 

  • Ramli AN, Azhar MA, Shamsir MS, Rabu A, Murad AM, Mahadi NM, Illias RM (2013) Sequence and structural investigation of a novel psychrophilic alpha-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19(8):3369–3383

    CAS  PubMed  Google Scholar 

  • Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408

    PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Singh D, Rawat S (2018) Molecular dynamics simulation studies suggests unconventional roles of non-secretary laccases from enteropathogenic gut bacteria and Cryptococcus neoformans serotype D. Comput Biol Chem 73:41–48

    CAS  PubMed  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Baba T, Ooguri T, Moriyama S, Terai T, Tominaga Y (2001) Ethyl esterification of docosahexaenoic acid in an organic solvent-free system with immobilized Candida antarctica lipase. J Biosci Bioeng 92(1):19–23

    CAS  PubMed  Google Scholar 

  • Singh D, Rawat S, Waseem M, Gupta S, Lynn A, Nitin M, Ramchiary N, Sharma KK (2016a) Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun 469(2):306–312

    CAS  PubMed  Google Scholar 

  • Singh V, Singh MP, Verma V, Singh P, Srivastava R, Singh AK (2016b) Characteristics of cold adapted enzyme and its comparison with mesophilic and thermophilic counterpart. Cell Mol Biol 62:144

    Google Scholar 

  • Socan J, Isaksen GV, Brandsdal BO, Aqvist J (2019) Towards rational computational engineering of psychrophilic enzymes. Sci Rep 9:19147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotelo-Mundo RR, Lopez-Zavala AA, Garcia-Orozco KD, Arvizu-Flores AA, Velazquez-Contreras EF, Valenzuela-Soto EM, Rojo-Dominguez A, Kanost MR (2007) The lysozyme from insect (Manduca sexta) is a cold-adapted enzyme. Protein Pept Lett 14(8):774–778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tratsiak K, Degtjarik O, Drienovska I, Chrast L, Rezacova P, Kuty M, Chaloupkova R, Damborsky J, Kuta Smatanova I (2013) Crystallographic analysis of new psychrophilic haloalkane dehalogenases: DpcA from Psychrobacter cryohalolentis K5 and DmxA from Marinobacter sp. ELB17. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(6):683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tutino ML, di Prisco G, Marino G, de Pascale D (2009) Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett 16(10):1172–1180

    CAS  PubMed  Google Scholar 

  • Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C-g, Oue N, Yasui W (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146

    CAS  PubMed  Google Scholar 

  • Yadav GD, Lathi PS (2004) Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies. J Mol Catal B Enzym 27(2-3):113–119

    CAS  Google Scholar 

Download references

Acknowledgments

The authors like to acknowledge the Research Center for Pharmaceutical Nanotechnology at Tabriz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

SP conceived and designed research. SP and NH wrote the manuscript. MSS and JR revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Sepideh Parvizpour.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvizpour, S., Hussin, N., Shamsir, M.S. et al. Psychrophilic enzymes: structural adaptation, pharmaceutical and industrial applications. Appl Microbiol Biotechnol 105, 899–907 (2021). https://doi.org/10.1007/s00253-020-11074-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11074-0

Keywords

Navigation