Skip to main content

Advertisement

Log in

Detection and characterization of agroforestry systems in the Colombian Andes using sentinel-2 imagery

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In the Colombian Andes, agroforestry is a traditional form of agriculture, characterized by a heterogeneous and often diversified composition of trees and crops. This form of land use provides important ecosystem services, such as carbon sequestration, reduction of soil erosion and the maintenance of biodiversity by providing a structural complex habitat. Satellite remote sensing is widely used for studying land use patterns and forest cover, however the discrimination between agroforestry systems and forests is still a challenge, especially in heterogeneous landscapes and in rough terrain. Here, we aim to advance the remote sensing of agroforestry systems using field measurements of vegetation structure in combination with Sentinel-2 images. We use spectral and textural variables derived from Sentinel-2 imagery to predict above ground biomass (AGB), leaf area index (LAI) and canopy closure (CC). The relationship between predicted and observed values obtained from Random Forest regression models showed good fits: for AGB with an R2 = 0.92 and relative RMSE = 34%; for LAI with an R2 = 0.91 and relative RMSE = 19%; and for CC an R2 = 0.89 and relative RMSE = 9%. This allowed us to map these important ecosystem variables at landscape scale and establish empirical thresholds, with which a discrimination of agroforestry systems from forests was possible with an accuracy of 94%. Our results suggest that the relationship between vegetation structure and the spectral information obtained by Sentinel-2 can contribute to the detection and characterization of agroforestry systems and thus help quantifying the ecosystem services and biodiversity conservation potential provided by this type of tropical agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agr Ecosyst Environ 99(1–3):15–27

    Article  CAS  Google Scholar 

  • Alvarez E, Duque A, Saldarriaga J, Cabrera K, De G, Lema A, Moreno F, Orrego S, Rodríguez L (2012) Forest Ecology and Management Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For Ecol Manage 267:297–308

    Article  Google Scholar 

  • Bégué A, Arvor D, Lelong C, Vintrou E, Simoes M (2015) Agricultural systems studies using remote sensing. In: Thenkabail PS (ed) Remote sensing handbook. Land resources: monitoring, modeling, and mapping, vol II. CRC Press, Boca Raton, FL, USA. Taylor and Francis Group, London, UK; New York, NY, USA, pp 113–130

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267

    Article  PubMed  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Rouault E, Bivand MR (2015) Package ‘rgdal’. Bindings for the geospatial data abstraction library. https://cran.r-project.org/web/packages/rgdal/index.html. Accessed 12 Sept 2019

  • Boyd DS, Danson FM (2005) Satellite remote sensing of forest resources: three decades of research development. Prog Phys Geogr 29(1):1–26

    Article  Google Scholar 

  • Brüning LZ, Krieger M, Meneses-Pelayo E, Eisenhauer N, Pinilla MPR, Reu B, Ernst R (2018) Land-use heterogeneity by small-scale agriculture promotes amphibian diversity in montane agroforestry systems of northeast Colombia. Agr Ecosyst Environ 264:15–23

    Article  Google Scholar 

  • Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor D, Avitabile V, Disney M, Armston J, Kaasalainen M (2015) Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol Evol 6(2):198–208

    Article  Google Scholar 

  • Cardinael R, Umulisa V, Toudert A, Olivier A, Bockel L, Bernoux M (2018) Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ Res Lett 13(12):124020

    Article  Google Scholar 

  • Chen L, Wang Y, Ren C, Zhang B, Wang Z (2019) Optimal combination of predictors and algorithms for forest above-ground biomass mapping from sentinel and SRTM data. Remote Sens 11(4):414

    Article  CAS  Google Scholar 

  • DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86(2–3):99–114

    Article  Google Scholar 

  • Dang ATN, Nandy S, Srinet R, Luong NV, Ghosh S, Kumar AS (2019) Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park. Vietnam Ecological Informatics 50:24–32

    Article  Google Scholar 

  • Dhyani SK, Ram A, Newaj R, Handa AK, Dev I (2020) Agroforestry for carbon sequestration in tropical India. In: Ghosh PK, Mahanta SK, Mandal D, Mandal B, Ramakrishnan S (eds) Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore

    Google Scholar 

  • Dossa EL, Fernandes ECM, Reid WS, Ezui K (2008) Above-and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72(2):103–115

    Article  Google Scholar 

  • Dube T, Mutanga O (2015) Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J Photogramm Remote Sens 101:36–46

    Article  Google Scholar 

  • Erinjery JJ, Singh M, Kent R (2018) Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens Environ 216:345–354

    Article  Google Scholar 

  • Fournier RA, Hall RJ (eds) (2017) Hemispherical photography in forest science: theory, methods, applications. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-024-1098-3

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook

    Google Scholar 

  • Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB (2008) Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric For Meteorol 148(8–9):1193–1209

    Article  Google Scholar 

  • Garrity DP (2004) Agroforestry and the achievement of the Millennium Development Goals. Agrofor Syst 61(1–3):5–17

    Google Scholar 

  • Garrity D, Okono A, Grayson M, Parrot S (2006) World agroforestry into the future. World Agroforestry Centre, Nairobi

    Google Scholar 

  • Gao Y, Lu D, Li G, Wang G, Chen Q, Liu L, Li D (2018) Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens 10(4):627

    Article  Google Scholar 

  • Gomez C, Mangeas M, Petit M, Corbane C, Hamon P, Hamon S, De Kochko A, Le Pierres D, Despinoy M (2010) Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones. Remote Sens Environ 114(11):2731–2744

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Kommareddy A (2013) High-resolution global maps of 21stcentury forest cover change. Science 342(6160):850–853

    Article  CAS  PubMed  Google Scholar 

  • Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Transact Syst man Cybern 6:610–621

    Article  Google Scholar 

  • Hawryło P, Wężyk P (2018) Predicting growing stock volume of scots pine stands using Sentinel-2 satellite imagery and airborne image-derived point clouds. Forests 9(5):274

    Article  Google Scholar 

  • Hijmans RJ, Van Etten J (2012) raster: Geographic analysis and modeling with raster data. R package version 2.0–05. http://CRAN.R-project.org/package=raster

  • IDEAM (2010) Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrología, Meteorología y Estudios Ambientales. Bogotá, D. C., p 72

  • Isaac ME, Timmer VR, Quashie-Sam SJ (2007) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cocoa by vector analysis. Nutr Cycl Agroecosyst 78(2):155–165

    Article  Google Scholar 

  • Ishii HT, Tanabe SI, Hiura T (2004) Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Forest Science 50(3):342–355

    Google Scholar 

  • Jadhav PP, Deshmukh VB (2019) Optimum band selection in sentinel-2A satellite for crop classification using machine learning technique. Int Res J Eng Technol 6(4):1619–1625

    Google Scholar 

  • Jafari SM, Zarre S, Alavipanah SK (2013) Woody species diversity and forest structure from lowland to montane forest in Hyrcanian forest ecoregion. J Mt Sci 10(4):609–620

    Article  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85(1):1–8

    Article  Google Scholar 

  • Karlson M, Ostwald M, Bayala J, Bazié HR, Ouedraogo AS, Soro B, Sanou J, Reese H (2020) The potential of Sentinel-2 for crop production estimation in a smallholder agroforestry landscape. Burkina Faso Front Environ Sci 8:85

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16(4):1003–1014

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2006) Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. J Anim Ecol 75(2):315–323

    Article  PubMed  Google Scholar 

  • Korhonen L, Ali-Sisto D, Tokola T (2015) Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data. Silva Fennica 49(5):1–18

    Article  Google Scholar 

  • Korhonen L, Packalen P, Rautiainen M (2017) Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens Environ 195:259–274

    Article  Google Scholar 

  • Kuyah S, Öborn I, Jonsson M (2017) Regulating ecosystem services delivered in agroforestry systems. In: Dagar JC, Tewari VP (eds) Agroforestry. Springer, Singapore

    Google Scholar 

  • Laurin GV, Puletti N, Hawthorne W, Liesenberg V, Corona P, Papale D, Chen Q, Valentini R (2016) Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens Environ 176:163–176

    Article  Google Scholar 

  • Leimona B, Noordwijk MV (2017) Smallholder agroforestry for sustainable development goals: ecosystem services and food security. Palawija Newsletter 34(1):1–6

    Google Scholar 

  • Lelong C, Dupuy S, Alexandre C (2014) Discrimination of tropical agroforestry systems in very high resolution satellite imagery using object-based hierarchical classification: a case-study on cocoa in Cameroon. South-East Eur J Earth Obs Geom 3:255–258

    Google Scholar 

  • Lelong C, Thong-Chane A (2003) Application of textural analysis on very high resolution panchromatic images to map coffee orchards in Uganda. In IGARSS 2003. Paper presented at IEEE international geoscience and remote sensing symposium. IEEE Proceedings, IEEE Cat. No. 03CH37477. Vol. 2, pp. 1007–1009

  • Liaw A, Wiener M (2002) Classification and regression by random forest. R news 2(3):18–22

    Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using landsat TM data in the Brazilian Amazon. Int J Remote Sens 26(12):2509–2525

    Article  Google Scholar 

  • Manduell KL, Harrison ME, Thorpe SK (2012) Forest structure and support availability influence orangutan locomotion in Sumatra and Borneo. Am J Primatol 74(12):1128–1142

    Article  PubMed  Google Scholar 

  • Marín MP, Andrade H, Sandoval A (2016) Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Revista UDCA Actualidad y Divulgación Científica 19(2):351–360

    Google Scholar 

  • Martone M, Rizzoli P, Wecklich C, González C, Bueso-Bello JL, Valdo P, Schulze D, Zink M, Krieger G, Moreira A (2018) The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens Environ 205:352–373

    Article  Google Scholar 

  • Mbow HOP, Reisinger A, Canadell J, O’Brien P (2017) Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SR2). Ginevra, IPCC

    Google Scholar 

  • Mitchell K (2015) Quantitative analysis by the point-centered quarter method. ArXiv Preprint, arXiv 1010:1–56

    Google Scholar 

  • Morin D, Planells M, Guyon D, Villard L, Mermoz S, Bouvet A, Thevenon H, Dejoux J-F, Le Toan T, Dedieu G (2019) Estimation and mapping of forest structure parameters from open access satellite images: development of a generic method with a study case on coniferous plantation. Remote Sens 11(11):1275

    Article  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Nair PR (1985) Classification of agroforestry systems. Agrofor Syst 3(2):97–128

    Article  Google Scholar 

  • Orozco GV, Espinosa CMO, Salazar JCS, Pantoja CFL (2015) Almacenamiento de carbono en arreglos agroforestales asociados con café (Coffea arabica) en el sur de Colombia. Revista de Investigación Agraria y Ambiental (RIAA) 5(1):213–221

    Article  Google Scholar 

  • Pinilla MC, Rueda AJ, Pinzón CA (2018) Métodos para el monitoreo agroclimático alrededor de embalses: estudio de caso para la hidroeléctrica Sogamoso, Santander. Colombia, Fundación Natura, p 76

    Google Scholar 

  • Porras INA, Vorley B, Amrein A, Douma W, Clemens H (2015) Payments for ecosystem services in smallholder agriculture: lessons from the Hivos-IIED learning trajectory. IIED and Hivos

  • QGIS Development Team., 2015. QGIS geographic information system. Open Source Geospatial Foundation Project, Versão. Vol. 2. No. 7

  • R Development Core Team, R. F. F. S. C., 2011. R: A language and environment for statistical computing

  • Safari A, Sohrabi H (2016) Ability of Landsat-8 OLI derived texture metrics in estimating aboveground carbon stocks of coppice oak forests. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, p 41

    Google Scholar 

  • Satyanarayana B, Mohamad KA, Idris IF, Husain ML, Dahdouh-Guebas F (2011) Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. Int J Remote Sens 32(6):1635–1650

    Article  Google Scholar 

  • Satyanarayana B, Muslim AM, Horsali NAI, Zauki NAM, Otero V, Nadzri MI, Ibrahim S, Husain M-L, Dahdouh-Guebas F (2018) Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations. PeerJ 6:e4397

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68(2):143–150

    Article  Google Scholar 

  • Seidel D, Fleck S, Leuschner C (2012) Analyzing forest canopies with ground-based laser scanning: a comparison with hemispherical photography. Agric For Meteorol 154:1–8

    Article  Google Scholar 

  • Sharma G, Hunsdorfer B, Singh KK (2016) Comparative analysis on the socio-ecological and economic potentials of traditional agroforestry systems in the Sikkim Himalaya. Tropical Ecology 57(4):751–764

    Google Scholar 

  • Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva, Switzerland

  • Scheper AC (2019) The potential of coffee agroforestry systems to enhance crop productivity, pest control, carbon sequestration and biodiversity: Evidence from theEje Cafetero, Colombia. Geosciences, Utrecht University Repository. Masters thesis. https://dspace.library.uu.nl/handle/1874/384704.

  • SNAP - ESA Sentinel Application Platform v6.0 [Computer software]. (2019). Retrieved from http://step.esa.int. Accessed 2019

  • Somarriba E, Beer J, Orihuela JA, Andrade HJ, Cerda R, Declerck F, Detlefsen G, Escalante M, Giraldo LA, Ibrahim MA, Krishnamurthy L, Mena VE, Mora JR, Orozco L, Scheelje M, Campos JJ (2012) Mainstreaming agroforestry in Latin America. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use. Springer, Berlin

    Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espin T, Mavisoy H, Avila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agr Ecosyst Environ 173:46–57

    Article  Google Scholar 

  • Taugourdeau S, Le Maire G, Avelino J, Jones JR, Ramirez LG, Quesada MJ, Charbonnier F, Gómez-Delgado F, Harmand J, Rapidel B, Vaast P, Roupsard O (2014) Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry. Agr Ecosyst Environ 192:19–37

    Article  Google Scholar 

  • Tropek R, Sedláček O, Beck J, Keil P, Musilová Z, Šímová I, Storch D (2014) Comment on “high-resolution global maps of 21st-century forest cover change.” Science 344(6187):981–981

    Article  CAS  PubMed  Google Scholar 

  • TSITSI, B. (2016) Remote sensing of aboveground forest biomass: a review. Tropical Ecology 57(2):125–132

    Google Scholar 

  • Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N (2017) Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10:1–6

    Google Scholar 

  • Warde W, Petranka JW (1981) A correction factor table for missing point-center quarter data. Ecology 62(2):491–494

    Article  Google Scholar 

  • Watch GF (2002) Global forest watch. World Resources Institute, Washington, DC. http://www.globalforestwatch.org. Accessed March 2019

  • Weiss M, Baret F (2016) S2ToolBox Level 2 products: LAI, FAPAR. FCOVER, Institut National de la Recherche Agronomique (INRA), Avignon

    Google Scholar 

  • Yapo T (2019) How implementing agroforestry in plantations can help côte d'ivoire achieve its sustainable development goals. https://www.un-redd.org/single-post/2019/05/17/How-Implementing-Agroforestry-in-Plantations-Can-Help-Côte-dIvoire-Achieve-its-Sustainable-Development-Goals. Accesed 23 Nov 2019

  • Zapata Arango PC (2019) Composición y estructura del dosel de sombra en sistemas agroforestales con café de tres municipios de Cundinamarca. Colombia Ciência Florestal 29(2):685–697

    Article  Google Scholar 

  • Zhang T, Su J, Liu C, Chen WH, Liu H, Liu G (2017) Band selection in Sentinel-2 satellite for agriculture applications. Paper presented at 23rd International Conference on Automation and Computing (ICAC). IEEE. pp 1–6

  • Zhang TX, Su JY, Liu CJ, Chen WH (2019) Potential bands of sentinel-2A satellite for classification problems in precision agriculture. Int J Autom Comput 16(1):16–26

    Article  Google Scholar 

  • Zomer RJ, Bossio DA, Trabucco A, Yuanjie L, Gupta DC, Singh VP (2007) Trees and water: smallholder agroforestry on irrigated lands in Northern India. IWMI. Vol. 122

Download references

Acknowledgements

The authors are grateful for the funding received by the GEF-Satoyama project (http://gef-satoyama.net/) and the Young Researcher Scholarship for SBS granted by Colciencias Call No. 812 of 2018. SBS and BR would also like to thank the people of Las Cruces for their hospitality and their way to share their time and knowledge. BR would like to thank the Vicerrectoria de Investigación y Extensión of the Industrial University of Santander for their support during the execution of the GEF-Satoyama subgrant project. SBS would like to thank Mateo Jaimes, Daniel Badillo, Valentin Fromm, Xaver Schenk, Alwin Säman, Mauricio Pabón, Yovanny Duran and René Ardila for their support during field sampling. Finally, we thank Prof. Dr. Hannes Feilhauer for his comments on this ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Reu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolívar-Santamaría, S., Reu, B. Detection and characterization of agroforestry systems in the Colombian Andes using sentinel-2 imagery. Agroforest Syst 95, 499–514 (2021). https://doi.org/10.1007/s10457-021-00597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-021-00597-8

Keywords

Navigation