Skip to main content
Log in

Formation Mechanism of Nanoparticles in Fe–Cr–Al ODS Alloy Fabricated by Direct Oxidation Method

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This study presents the fabrication of 14Cr Fe–Cr–Al oxide dispersion strengthened (ODS) alloy by a direct oxidation process. In order to explain how oxide nanoparticles are formed in the consolidation process, the powders after oxidation are subjected to vacuum thermal treatment at high temperatures. Differential scanning calorimeter, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy techniques are used to detect the generation, evolution of oxides on both the surface and interior of the powder, as well as the type of oxide nanoparticles in the fabricated ODS alloy. It is found that an iron oxide layer is formed on the surface of the powder during low temperature oxidation. And the iron oxide layer would be decomposed after thermal treatment at high temperature. In the consolidation process, the oxygen required by the reaction of alumina and yttrium oxide to produce nanoscale Y–Al–O particles mainly derives from the decomposition of iron oxide layer at elevated temperature and the inward diffusion of oxygen. Using the direct oxidation process, YAlO3 nanoparticles are dispersed in the grains and at the grain boundaries of Fe–Cr–Al ODS alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Allen, J. Busby, M. Meyer, D. Petti, Mater. Today 13, 14 (2010)

    Article  CAS  Google Scholar 

  2. S.K. Karak, T. Chudoba, Z. Witczak, W. Lojkowski, I. Manna, Mater. Sci. Eng. A 528, 7475 (2011)

    Article  CAS  Google Scholar 

  3. P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Acta Mater. 59, 992 (2011)

    Article  CAS  Google Scholar 

  4. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe, J. Nucl. Mater. 417, 176 (2011)

    Article  CAS  Google Scholar 

  5. H. Shibata, S. Ukai, N.H. Oono, K. Sakamoto, M. Hirai, J. Nucl. Mater. 502, 228 (2018)

    Article  CAS  Google Scholar 

  6. S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013)

    Article  CAS  Google Scholar 

  7. Z. Zhang, W. Pantleon, Acta Mater. 149, 235 (2018)

    Article  CAS  Google Scholar 

  8. Q. Zhao, L. Yu, Y. Liu, Y. Huang, Q. Guo, H. Li, J. Wu, Powder Technol. 311, 449 (2017)

    Article  CAS  Google Scholar 

  9. C. Suryanarayana, E. Ivanov, Adv. Powder Metall. 3, 42 (2013)

    Article  Google Scholar 

  10. Z. Hong, X. Zhang, Q. Yan, Y. Chen, J. Alloys Compd. 770, 831 (2019)

    Article  CAS  Google Scholar 

  11. L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller, J. Nucl. Mater. 329–333, 166 (2004)

    Article  Google Scholar 

  12. J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, E. Haney, J. Nucl. Mater. 428, 65 (2012)

    Article  CAS  Google Scholar 

  13. E. Gil, J. Cortés, I. Iturriza, N. Ordás, Appl. Surf. Sci. 427, 182 (2018)

    Article  CAS  Google Scholar 

  14. E. Gil, N. Ordás, C. García-Rosales, I. Iturriza, Fusion Eng. Des. 98–99, 1973 (2015)

    Article  Google Scholar 

  15. J. Li, S. Wu, P. Ma, Y. Yang, E. Wu, L. Xiong, S. Liu, Mater. Sci. Eng. A 757, 42 (2019)

    Article  CAS  Google Scholar 

  16. R.J. Miller, A. Gangulee, J. Vac. Sci. Technol. 15, 244 (1978)

    Article  CAS  Google Scholar 

  17. K. Nakamura, M. Kamoshida, J. Appl. Phys. 48, 5349 (1977)

    Article  CAS  Google Scholar 

  18. C.M. Wang, G.S. Cargill, H.M. Chan, M.P. Harmer, Acta Mater. 48, 2579 (2000)

    Article  CAS  Google Scholar 

  19. A.M. Thompson, K.K. Soni, H.M. Chan, M.P. Harmer, D.B. Williams, J.M. Chabala, R. Levi-Setti, J. Am. Ceram. Soc. 80, 373 (1997)

    Article  CAS  Google Scholar 

  20. C.L. Briant, K.L. Luthra, Metall. Trans. A 19 A, 2099 (1988)

    Article  Google Scholar 

  21. J. Wang, S. Liu, X. Bai, X. Zhou, X. Han, Vacuum 173, 109144 (2020)

    Article  CAS  Google Scholar 

  22. C.L. Briant, R.A. Mulford, Metall. Trans. A 13, 745 (1982)

    Article  CAS  Google Scholar 

  23. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer, Surf. Sci. 506, 313 (2002)

    Article  CAS  Google Scholar 

  24. S. Wu, J. Li, W. Li, S. Liu, J. Alloys Compd. 814, 152282 (2020)

    Article  CAS  Google Scholar 

  25. C.L. Chen, Y.M. Dong, Mater. Sci. Eng. A 528, 8374 (2011)

    Article  CAS  Google Scholar 

  26. K. Nomura, Y. Ujihira, J. Mater. Sci. 25, 1745 (1990)

    Article  CAS  Google Scholar 

  27. T. Kosaka, S. Suzuki, H. Inoue, M. Saito, Y. Waseda, E. Matsubara, Appl. Surf. Sci. 103, 55 (1996)

    Article  CAS  Google Scholar 

  28. G. Betz, G.K. Wehner, L. Toth, A. Joshi, J. Appl. Phys. 45, 5312 (1974)

    Article  CAS  Google Scholar 

  29. M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson, J. Eur. Ceram. Soc. 26, 3515 (2006)

    Article  CAS  Google Scholar 

  30. D. Pazos, M. Suárez, A. Fernández, P. Fernández, I. Iturriza, N. Ordás, Fusion Eng. Des. 146, 2328 (2019)

    Article  CAS  Google Scholar 

  31. K. Dawson, S.J. Haigh, G.J. Tatlock, A.R. Jones, J. Nucl. Mater. 464, 200 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Defense Science and Technology Industry Nuclear Material Technology Innovation Center Project (No. ICNM-2020-ZH-17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Shi Liu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Li, J., Li, Y. et al. Formation Mechanism of Nanoparticles in Fe–Cr–Al ODS Alloy Fabricated by Direct Oxidation Method. Acta Metall. Sin. (Engl. Lett.) 34, 963–972 (2021). https://doi.org/10.1007/s40195-020-01184-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01184-z

Keywords

Navigation