Skip to main content
Log in

THE CATEGORY OF WEIGHT MODULES FOR SYMPLECTIC OSCILLATOR LIE ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The rank n symplectic oscillator Lie algebra 𝔤n is the semidirect product of the symplectic Lie algebra 𝔰𝔭2n and the Heisenberg algebra Hn. In this paper, we first study weight modules with finite-dimensional weight spaces over 𝔤n. When the central charge \( \dot{z} \) ≠ 0, it is shown that there is an equivalence between the full subcategory 𝒪𝔤n \( \left[\dot{z}\right] \) of the BGG category 𝒪𝔤n for 𝔤n and the BGG category 𝒪𝔰𝔭2n for 𝔰𝔭2n. Then using the technique of localization and the structure of generalized highest weight modules, we give the classification of simple weight modules over 𝔤n with finite-dimensional weight spaces. As a byproduct we also determine all simple 𝔤n-modules (not necessarily weight modules) that have a simple Hn-submodule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Benkart, D. J. Britten, F. W. Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), 333–353.

    Article  MathSciNet  Google Scholar 

  2. S. Berceanu, A holomorphic representation of the semidirect sum of symplectic and Heisenberg algebras, J. Geom. Symmetry Phys. 5 (2006), 5–13.

    MathSciNet  MATH  Google Scholar 

  3. S. Berceanu, Generalized squeezed states for the Jacobi group, in: Geometric Methods in Physics, AIP Conf. Proc. 1079, Amer. Inst. Phys., Melville, NY, 2008, pp. 67–75.

  4. S. Berceanu, A holomorphic representation of the multidimensional Jacobi algebra, in: Perspectives in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math. 8, Theta, Bucharest, 2008, pp. 1–25.

  5. S. Berceanu, Balanced metric and Berezin quantization on the Siegel–Jacobi ball, SIGMA 12 (2016), 064, 24 pp.

    MathSciNet  MATH  Google Scholar 

  6. R. Berndt, R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, Vol. 163, Birkhäuser Verlag, Basel, 1998.

  7. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, Об одно категории 𝔤-модуле, Φyнкц. анализ и его прил. 10 (1976), вып. 2, 1–8. Engl. transl.: I. N. Bernshtein, I. M. Gel’fand, S. I. Gel’fand, Category of 𝔤-modules, Funct. Analysis Appl. 10 (1976), no. 2, 87–92.

  8. J. Bernstein, V. Lunts, On nonholonomic irreducible D-modules, Invent. Math. 94 (1988), no. 2, 223–243.

    Article  MathSciNet  Google Scholar 

  9. R. Block, The irreducible representations of the Lie algebra (2) and of the Weyl algebra, Adv. Math. 139 (1981), no. 1, 69–110.

    Article  MathSciNet  Google Scholar 

  10. D. J. Britten, F. W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), 683–697 .

    Article  MathSciNet  Google Scholar 

  11. I. Dimitrov, O. Mathieu, I. Penkov, On the structure of weight modules, Trans. Amer. Math. Soc. 352 (2000), 2857–2869.

    Article  MathSciNet  Google Scholar 

  12. I. Dimitrov, D. Grantcharov, Classification of simple weight modules over afine Lie algebras, arXiv:0910.0688 (2009).

  13. V. Dobrev, H. D. Doebner, C. Mrugalla, Lowest weight representations of the Schrödinger algebra and generalized heat/Schrödinger equations, Rep. Math. Phys. 39 (1997), 201–218.

    Article  MathSciNet  Google Scholar 

  14. B. Dubsky, Classification of simple weight modules with finite-dimensional weight spaces over the Schrodinger algebra, Lin. Algebra Appl. 443 (2014), 204–214 .

    Article  MathSciNet  Google Scholar 

  15. B. Dubsky, R. Lu, V. Mazorchuk, K. Zhao, Category 𝒪 for the Schrödinger algebra, Linear Algebra Appl. 460 (2014), 17–50.

    Article  MathSciNet  Google Scholar 

  16. M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, Vol. 55, Birkhäuser Boston, Boston, MA, 1985.

  17. P. Etingof, W. L. Gan, V. Ginzburg, Continuous Hecke algebras, Transform. Groups. 10 (2005), no. 3-4, 423–447.

    Article  MathSciNet  Google Scholar 

  18. S. Fernando, Lie algebra modules with finite-dimensional weight spaces, I, Trans. Amer. Math. Soc. 322 (1990), 757–781.

    MathSciNet  MATH  Google Scholar 

  19. V. Futorny, D. Grantcharov, V. Mazorchuk, Weight modules over infinite-dimensional Weyl algebras, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3049–3057.

    Article  MathSciNet  Google Scholar 

  20. V. Futorny, A. Tsylke, Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras, J. Algebra 238 (2001), 426–441.

    Article  MathSciNet  Google Scholar 

  21. A. Galajinsky, I. Masterov, Remarks on l-conformal extension of the Newton–Hooke algebra, Phys. Lett. B. 702 (2011), no. 4, 265–267.

    Article  MathSciNet  Google Scholar 

  22. W. L. Gan, A. Khare, Quantized symplectic oscillator algebras of rank one, J. Algebra 310 (2007), no. 2, 671–707.

    Article  MathSciNet  Google Scholar 

  23. D. Grantcharov, V. Serganova, Category of (2n) -modules with bounded weight multiplicities, Mosc. Math. J. 6 (2006), 119–134.

    Article  MathSciNet  Google Scholar 

  24. J. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category 𝒪, Graduate Studies in Mathematics, Vol. 94, American Mathematical Society, Providence, RI, 2008.

  25. C. J. Isham, J. R. Klauder, Coherent states for n-dimensional Euclidean groups E(n) and their application, J. Math. Phys. 32 (1991), no. 3, 607–620.

    Article  MathSciNet  Google Scholar 

  26. A. Khare, Category 𝒪 over a deformation of the symplectic oscillator algebra, J. Pure Appl. Algebra 195 (2005), no. 2, 131–166.

    Article  MathSciNet  Google Scholar 

  27. M. Lau, Classification of Harish-Chandra modules for current algebras, Proc. Amer. Math. Soc. 146 (2018), no. 3, 1015–1029.

    Article  MathSciNet  Google Scholar 

  28. Y. Lequain, Cyclic irreducible non-holonomic modules over the Weyl algebra: an algorithmic characterization, J. Pure Appl. Algebra 215 (2011), no. 4, 531–545.

    Article  MathSciNet  Google Scholar 

  29. H. Li, On certain categories of modules for affine Lie algebras, Math. Z. 248 (2004), no. 3, 635–664.

    Article  MathSciNet  Google Scholar 

  30. R. Lu, V. Mazorchuk, K. Zhao, On simple modules over conformal Galilei algebras, J. Pure Appl. Algebra, 218 (2014), 1885–1899.

    Article  MathSciNet  Google Scholar 

  31. R. Lu, K. Zhao, Classification of irreducible weight modules over the twisted Heisenberg–Virasoro algebra, Comm. Contem. Math. 12 (2010), no. 2, 183–205.

    Article  MathSciNet  Google Scholar 

  32. O. Mathieu, Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math. 107 (1992), no. 2, 225–234.

    Article  MathSciNet  Google Scholar 

  33. O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier 50 (2000), 537–592.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KAIMING ZHAO.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Genqiang Liu is supported by NSFC (11771122) and NSF of Henan Province (202300410046).

Kaiming Zhao is supported by NSFC (11871190) and NSERC (311907-2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LIU, G., ZHAO, K. THE CATEGORY OF WEIGHT MODULES FOR SYMPLECTIC OSCILLATOR LIE ALGEBRAS. Transformation Groups 27, 1025–1044 (2022). https://doi.org/10.1007/s00031-021-09639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09639-y

Navigation