Skip to main content

Advertisement

Log in

Estimation of \(\alpha -\kappa -\mu \) mobile fading channel parameters using evolutionary algorithms

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes the use of evolutionary algorithms (EAs) to estimate the physical parameters of the generalized \(\alpha -\kappa -\mu \) mobile fading channel model. The estimation of parameters is a fundamental step that allows for the statistical model to adjust to the real experimental data. The The maximum likelihood estimation (MLE) method that is traditionally used for estimating parameters of the \(\alpha -\kappa -\mu \) channel uses nonlinear numerical methods. In some cases, the use of nonlinear numerical methods may lead the MLE to make physically unacceptable estimations, or even to not be able to obtain a result. Our proposal is to innovate the existing EAs by incorporating an adaptive approach, a new mutation strategy and an adequate fitness function for the estimation of \(\alpha -\kappa -\mu \) parameters. Experimental results are presented to confirm that parameters estimated by the EAs (genetic algorithms, differential evolution algorithms, and differential evolution algorithms with an adaptive guiding mechanism) are all physically acceptable. These experiments show that the EAs outperform MLE estimation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kobayashi, H., Mark, B., & Turin, W. (2012). Probability, Random Processes, and Statistical Analysis: Applications to Communications. Signal Processing, Queueing Theory and Mathematical Finance: Cambridge University Press. https://doi.org/10.1017/CBO9780511977770.

  2. Xuefeng, Y. X., & Cheng, (2016). Propagation channel characterization, parameter estimation and modeling for wireless communications. New Yor: Wiley-IEEE Press.

    Google Scholar 

  3. Panic, S., Stefanovic, M., Anastasov, J., & Spalevic, P. (2013). Fading and interference mitigation in wireless communications. Boca Raton: CRC Press (Verlag).

    Book  Google Scholar 

  4. Rappaport, T. (2001). Wireless Communications: Principles and Practice (2nd ed.). Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  5. Pätzold, M. (2012). Mobile radio channels (2nd ed.). New York: Wiley.

    Google Scholar 

  6. Simon, M., & Alouini, M. (2000). Digital communications over fading channels: A unified approach to performance analysis. New York: Wiley.

    Book  Google Scholar 

  7. Leon-Garcia, A. (2008). Probability, statistics, and random processes for electrical engineering (3rd ed.). Upper Saddle River: Pearson/Prentice Hall.

    Google Scholar 

  8. Abd-Elfattah, A. (2010). Goodness of fit test for the generalized rayleigh distribution with unknown parameters. Journal of Statistical Computation and Simulation.

  9. Fraidenraich, G., & Yacoub, M. (2006). The \(\alpha -\eta -\mu \) and \(\alpha -\kappa -\mu \) fading distributions. In: IEEE (ed) IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, pp 16 – 20, https://doi.org/10.1109/ISSSTA.2006.311725.

  10. Batista, F. P., Souza, R. A. A., & Ribeiro, A.M.O. (2016). Maximum likelihood estimator for the \(\alpha -\kappa -\mu \) fading environment. In: IEEE (ed) 2016 IEEE Wireless Communications and Networking Conference, IEEE, pp 1–6, https://doi.org/10.1109/WCNC.2016.7564734.

  11. Cogliatti, R., & Souza, R.A.A. (2013). A near-100% efficient algorithm for generating \(\alpha -\kappa -\mu \) and \(\alpha -\eta -\mu \) variates. In: IEEE (ed) Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th, pp 1–5, https://doi.org/10.1109/VTCFall.2013.6692042.

  12. Souza, R., Ribeiro, A., & Guimarães, D. (2015). On the efficiente generation of \(\alpha - \kappa -\mu \) and \(\alpha - \eta -\mu \) white samples with applications. International Journal of Antennaas and Propagation, 2015, 1–13. https://doi.org/10.1155/2015/873890.

    Article  Google Scholar 

  13. Moualeu, J. M., da Costa, D. B., Hamouda, W., Dias, U. S., & de Souza, R. A. A. (2019). Performance analysis of digital communication systems over \(\alpha \) - \(\kappa \) - \(\mu \) fading channels. IEEE Communications Letters, 23(1), 192–195. https://doi.org/10.1109/LCOMM.2018.2878218.

    Article  Google Scholar 

  14. Kalia, S., Joshi, A., & Agrawal, A. (2019). Performance analysis of spatial modulation over generalized \(\alpha -\kappa -\mu \) fading distribution. Physical Communication, 35, 100696. https://doi.org/10.1016/j.phycom.2019.04.010.

    Article  Google Scholar 

  15. Salahat, E., & Yang, N. (2018). Modeling recharge time of radio frequency energy harvesters in \(\alpha -\eta -\mu \) and \({\alpha }\,{-}\,{\kappa } \,{-}\,{\mu }\) fading channels. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp 1–6, https://doi.org/10.1109/ICCW.2018.8403574.

  16. Yacoub, M. (2016). The \(\alpha -\eta -\kappa -\mu \) fading model. IEEE Transactions on Antennas and Propagation, 64(8),

  17. Ribeiro, A.M.O. (2013). Contribuições à caracterização estatística do canal de radio móvel e estimação de para̧metros por máxima verossimilhança. Phd dissertation, Universidade Estadual de Campinas.

  18. Das, S., Mullick, S. S., & Suganthan, P. (2016). Recent advances in differential evolution—An updated survey. Swarm and Evolutionary Computation, 27, 1–30. https://doi.org/10.1016/j.swevo.2016.01.004.

    Article  Google Scholar 

  19. Das, S., & Suganthan, P. N. (2011). Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation,. https://doi.org/10.1109/TEVC.2010.2059031.

    Article  Google Scholar 

  20. Cai, Y., Shao, C., Zhou, Y., Fu, S., Zhang, H., & Tian, H. (2019). Differential evolution with adaptive guiding mechanism based on heuristic rules. IEEE Access, 7, 58023–58040. https://doi.org/10.1109/ACCESS.2019.2914963.

    Article  Google Scholar 

  21. Eiben, A., & Smith, J. (2015). Introduction to evolutionary computing (2nd ed.). Berlin: Springer. https://doi.org/10.1007/978-3-662-44874-8.

    Book  Google Scholar 

  22. Almeida, C. F. M., & Kagan, N. (2011). Aplicação de algoritmos genéticos e teoria dos conjuntos fuzzy no dimensionamento de sistemas de monitoração para redes de transmissão de energia elétrica. Revista Controle & Automação, 21(4), 363–378. http://www.scielo.br/pdf/ca/v21n4/a04v21n4.pdf.

  23. Fasolo, S. A., Lemos, C. P., Cardoso, A. S. V., & Araújo, L. C. (2018). Simulador para sinais com desvanecimento rápido para o modelo \(\alpha -\kappa -\mu \). In ENCOM 2018 - VIII Conferȩncia Nacional em Comunicações, Redes e Segurança da Informação.

  24. Rennó, V., Souza, R., & Yacoub, M. (2018). On the generation of \(\alpha -\eta -\kappa -\mu \) samples with applications. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), IEEE.

  25. Gentle, J. E. (2003). Randon number generation and Monte Carlo Methods (2nd ed.). Berlin: Springer.

    Google Scholar 

  26. Yacoub, M. (2007a). The \(\kappa -\mu \) distribution and the \(\eta -\mu \) distribuition. IEEE Antennas and Propagation Magazine, 49(1),

  27. Yacoub, M. (2007b). The \(\alpha -\mu \) distribution: A physical fading model for the stacy distribution. IEEE Transactions on Vehicular Technology, 56(1),

  28. Baricz, Á. (2010). Generalized Bessel Functions of the First Kind. Lecture Notes in Mathematics. Berlin Heidelberg: Springer. https://books.google.com.br/books?id=Xc5qCQAAQBAJ.

  29. Fernandes, G., Rodrigues, J. J. P. C., Carvalho, L. F., Al-Muhtadi, J. F., & Proença, M. L. (2019). A comprehensive survey on network anomaly detection. Telecommunication Systems, 70, 447–489. https://doi.org/10.1007/s11235-018-0475-8.

    Article  Google Scholar 

  30. Al-Dabbagh, R. D., Neri, F., Idris, N., & Baba, M. S. (2018). Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy. Swarm and Evolutionary Computation, 43, 284–311. https://doi.org/10.1016/j.swevo.2018.03.008.

    Article  Google Scholar 

  31. Awad, N. H., Ali, M. Z., Mallipeddi, R., & Suganthan, P. N. (2019). An efficient differential evolution algorithm for stochastic opf based active-reactive power dispatch problem considering renewable generators. Applied Soft Computing, 76, 445–458. https://doi.org/10.1016/j.asoc.2018.12.025.

    Article  Google Scholar 

  32. Abduljabbar, D., Hashim, S., & Sallehuddin, R. (2020). Nature-inspired optimization algorithms for community detection in complex networks: A review and future trends. Telecommunication Systems, 74, 225–252. https://doi.org/10.1007/s11235-019-00636-x.

    Article  Google Scholar 

  33. Sivanandam, S., & Deepa, S. N. (2008). Introduction to genetic algorithms. Berlin: Springer. https://doi.org/10.1007/978-3-540-73190-0.

    Book  Google Scholar 

  34. Liang, Y., & Leung, K. S. (2011). Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization. Applied Soft Computing, 11(2), 2017–2034. 10.1016/j.asoc.2010.06.017, http://www.sciencedirect.com/science/article/pii/S1568494610001535, the Impact of Soft Computing for the Progress of Artificial Intelligence.

  35. Gämperle, R., Müller, S., & Koumoutsakos, P. (2002). A parameter study for differential evolution. Advances in intelligent systems, fuzzy systems, evolutionary computation 10.

  36. Cai, Y., Zhao, M., Liao, J., Wang, T., Tian, H., & Chen, Y. (2017). Neighborhood guided differential evolution. Soft Computing, 21(16), 4769–4812. https://doi.org/10.1007/s00500-016-2088-z.

    Article  Google Scholar 

  37. Ali, M., & Törn, A. (2004). Population set-based global optimization algorithms: some modifications and numerical studies. Computers & Operations Research, 31(10), 1703–1725. https://doi.org/10.1016/S0305-0548(03)00116-3.

    Article  Google Scholar 

  38. Wu, X., Jain, L., Graña, M., Duro, R. J., d’Anjou, A., & Wang, P. P. (Eds.). (2005). Information Processing with Evolutionary Algorithms From Industrial Applications to Academic Speculations. Springer, London,. https://doi.org/10.1007/b138854.

  39. Thirumalai, C. S., Manickam, V., & Balaji, R. (2017). Data analysis using box and whisker plot for lung cancer. In IEEE (ed) International Conference on Innovations in Power and Advanced Computing Technologies [i-PACT2017], https://doi.org/10.1109/IPACT.2017.8245071.

  40. Selvin, S. (2019). The Joy of Statistics: A treasury of elementary statistical tools and their applications. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198833444.001.0001.

    Book  Google Scholar 

  41. Ronkkonen, J., Kukkonen, S., & Price, K. V. (2005). Real-parameter optimization with differential evolution. IEEE Congress on Evolutionary Computation, 1, 506–513. https://doi.org/10.1109/CEC.2005.1554725.

    Article  Google Scholar 

  42. Li, Y., Wang, S., & Yang, B. (2020). An improved differential evolution algorithm with dual mutation strategies collaboration. Expert Systems with Applications, 153, 113451. https://doi.org/10.1016/j.eswa.2020.113451.

    Article  Google Scholar 

  43. Krzywinski, M., & Altman, N. (2014). Visualizing samples with box plots. Nat Methods, 11, 119–120. https://doi.org/10.1038/nmeth.2813.

    Article  Google Scholar 

  44. Lobo, F. G., Goldberg, D. E., & Pelikan, M. (2000). Time complexity of genetic algorithms on exponentially scaled problems. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, GECCO’00, p 151-158.

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Paula Lemos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, C.P., Veiga, A.C.P. & Fasolo, S.A. Estimation of \(\alpha -\kappa -\mu \) mobile fading channel parameters using evolutionary algorithms. Telecommun Syst 77, 189–211 (2021). https://doi.org/10.1007/s11235-020-00743-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00743-0

Keywords

Navigation