Skip to main content
Log in

The meridional circulation of the Sun: Observations, theory and connections with the solar dynamo

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The meridional circulation of the Sun, which is observed to be poleward at the surface, should have a return flow at some depth. Since large-scale flows like the differential rotation and the meridional circulation are driven by turbulent stresses in the convection zone, these flows are expected to remain confined within this zone. Current observational (based on helioseismology) and theoretical (based on dynamo theory) evidences point towards an equatorward return flow of the meridional circulation at the bottom of the convection zone. Assuming the mean values of various quantities averaged over turbulence to be axisymmetric, we study the large-scale flows in solar-like stars on the basis of a 2D mean field theory. Turbulent stresses in a rotating star can transport angular momentum, setting up a differential rotation. The meridional circulation arises from a slight imbalance between two terms which try to drive it in opposite directions: a thermal wind term (arising out of the higher efficiency of convective heat transport in the polar regions) and a centrifugal term (arising out of the differential rotation). To make these terms comparable, the poles of the Sun should be slightly hotter than the equator. We discuss the important role played by the meridional circulation in the flux transport dynamo model. The poloidal field generated by the Babcock-Leighton process at the surface is advected poleward, whereas the toroidal field produced at the bottom of the convection zone is advected equatorward. The fluctuations in the meridional circulation (with coherence time of about 30–40 yr) help in explaining many aspects of the irregularities in the solar cycle. Finally, we discuss how the Lorentz force of the dynamo-generated magnetic field can cause periodic variations in the large-scale flows with the solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Bahcall, and R. K. Ulrich, Rev. Mod. Phys. 60, 297 (1988).

    ADS  Google Scholar 

  2. A. R. Choudhuri, Astrophysics for Physicists (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  3. R. C. Carrington, Mon. Not. R. Astron. Soc. 19, 1 (1858).

    ADS  Google Scholar 

  4. V. Bumba, and R. Howard, Astrophys. J. 141, 1502 (1965).

    ADS  Google Scholar 

  5. R. Howard, and B. J. LaBonte, Solar Phys. 74, 131 (1981).

    ADS  Google Scholar 

  6. Y. M. Wang, A. G. Nash, and N. R. J. Sheeley, Astrophys. J. 347, 529 (1989).

    ADS  Google Scholar 

  7. J. O. Stenflo, Sol. Phys. 32, 41 (1973).

    ADS  Google Scholar 

  8. R. W. Komm, R. F. Howard, and J. W. Harvey, Sol. Phys. 147, 207 (1993).

    ADS  Google Scholar 

  9. V. I. Makarov, M. P. Fatianov, and K. R. Sivaraman, Sol. Phys. 85, 215 (1983).

    ADS  Google Scholar 

  10. V. I. Makarov, and K. R. Sivaraman, Sol. Phys. 119, 35 (1989).

    ADS  Google Scholar 

  11. B. J. Labonte, and R. Howard, Sol. Phys. 80, 361 (1982).

    ADS  Google Scholar 

  12. D. H. Hathaway, Astrophys. J. 460, 1027 (1996).

    ADS  Google Scholar 

  13. R. K. Ulrich, Astrophys. J. 725, 658 (2010), arXiv: 1010.0487.

    ADS  Google Scholar 

  14. R. B. Leighton, R. W. Noyes, and G. W. Simon, Astrophys. J. 135, 474 (1962).

    ADS  Google Scholar 

  15. J. Christensen-Dalsgaard, Rev. Mod. Phys. 74, 1073 (2002), arXiv: astro-ph/0207403.

    ADS  Google Scholar 

  16. L. Gizon, and A. Birch, Living Rev. Sol. Phys. 2, 6 (2005).

    ADS  Google Scholar 

  17. A. Schad, L. Jouve, T. L. Duvall Jr., M. Roth, and S. Vorontsov, Space Sci. Rev. 196, 221 (2015), arXiv: 1603.04742.

    ADS  Google Scholar 

  18. S. Basu, Living Rev. Sol. Phys. 13, 2 (2016), arXiv: 1606.07071.

    ADS  Google Scholar 

  19. P. M. Giles, T. L. Duvall Jr., P. H. Scherrer, and R. S. Bogart, Nature 390, 52 (1997).

    ADS  Google Scholar 

  20. D. C. Braun, and Y. Fan, Astrophys. J. 508, L105 (1998).

    ADS  Google Scholar 

  21. J. Zhao, R. S. Bogart, A. G. Kosovichev, T. L. Duvall Jr., and T. Hartlep, Astrophys. J. 774, L29 (2013), arXiv: 1307.8422.

    ADS  Google Scholar 

  22. A. Schad, J. Timmer, and M. Roth, Astrophys. J. 778, L38 (2013), arXiv: 1311.7623.

    ADS  Google Scholar 

  23. S. P. Rajaguru, and H. M. Antia, Astrophys. J. 813, 114 (2015), arXiv: 1510.01843.

    ADS  Google Scholar 

  24. J. Jackiewicz, A. Serebryanskiy, and S. Kholikov, Astrophys. J. 805, 133 (2015), arXiv: 1504.08071.

    ADS  Google Scholar 

  25. R. Chen, and J. Zhao, Astrophys. J. 849, 144 (2017), arXiv: 1709.07905.

    ADS  Google Scholar 

  26. C. H. Lin, and D. Y. Chou, Astrophys. J. 860, 48 (2018).

    ADS  Google Scholar 

  27. L. Gizon, R. H. Cameron, M. Pourabdian, Z. C. Liang, D. Fournier, A. C. Birch, and C. S. Hanson, Science 368, 1469 (2020).

    ADS  Google Scholar 

  28. M. J. Thompson, J. Toomre, E. R. Anderson, H. M. Antia, G. Berthomieu, D. Burtonclay, S. M. Chitre, J. Christensen-Dalsgaard, T. Corbard, M. DeRosa, C. R. Genovese, D. O. Gough, D. A. Haber, J. W. Harvey, F. Hill, R. Howe, S. G. Korzennik, A. G. Kosovichev, J. W. Leibacher, F. P. Pijpers, J. Provost, E. J. Rhodes, J. Schou, T. Sekii, P. B. Stark, and P. R. Wilson, Science 272, 1300 (1996).

    ADS  Google Scholar 

  29. R. Howe, Living Rev. Sol. Phys. 6, 1 (2009).

    ADS  Google Scholar 

  30. R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, J. Schou, and M. J. Thompson, Astrophys. J. 634, 1405 (2005).

    ADS  Google Scholar 

  31. O. Benomar, M. Bazot, M. B. Nielsen, L. Gizon, T. Sekii, M. Takata, H. Hotta, S. Hanasoge, K. R. Sreenivasan, and J. Christensen-Dalsgaard, Science 361, 1231 (2018), arXiv: 1809.07938.

    ADS  Google Scholar 

  32. D. Y. Chou, and D. C. Dai, Astrophys. J. 559, L175 (2001).

    ADS  Google Scholar 

  33. J. Zhao, and A. G. Kosovichev, Astrophys. J. 603, 776 (2004).

    ADS  Google Scholar 

  34. D.-Y. Chou, and O. Ladenkov, Astrophys. J. 630, 1206 (2005).

    ADS  Google Scholar 

  35. S. Basu, and H. M. Antia, Astrophys. J. 717, 488 (2010), arXiv: 1005.3031.

    ADS  Google Scholar 

  36. R. Komm, I. González Hernández, R. Howe, and F. Hill, Sol. Phys. 290, 3113 (2015).

    ADS  Google Scholar 

  37. D. H. Hathaway, and L. Rightmire, Science 327, 1350 (2010).

    ADS  Google Scholar 

  38. S. Chakraborty, A. R. Choudhuri, and P. Chatterjee, Phys. Rev. Lett. 102, 041102 (2009), arXiv: 0907.4842.

    ADS  Google Scholar 

  39. R. H. Cameron, and M. Schüssler, Astrophys. J. 720, 1030 (2010), arXiv: 1007.2548.

    ADS  Google Scholar 

  40. B. B. Karak, and A. R. Choudhuri, Mon. Not. R. Astron. Soc. 410, 1503 (2011).

    ADS  Google Scholar 

  41. D. Passos, and I. Lopes, Astrophys. J. 686, 1420 (2008).

    ADS  Google Scholar 

  42. J.-L. Tassoul, Theory of Rotating Stars (Princeton University Press, Princeton, 1978).

    Google Scholar 

  43. G. Rüdiger, Differential Rotation and Stellar Convection (Gordon & Breach, New York, 1989).

    Google Scholar 

  44. L. L. Kitchatinov, in Proceedings of the First Asia-Pacific Solar Physics Meeting, edited by A. R. Choudhuri, and D. Banerjee (American Institute of Physics, New York, 2011), p. 71.

  45. L. L. Kitchatinov, in Solar and Astrophysical Dynamos and Magnetic Activity—IAU Symposium 294, edited by A. G. Kosovichev, E. de Gouveia Dal Pino, and Y. Yan, (2013), p. 399.

  46. L. D. Landau, and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959).

    Google Scholar 

  47. A. R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  48. A. I. Lebedinski, Astron. Zh. (USSR) 18, 10 (1941).

    Google Scholar 

  49. J. Wasiutynski, Astroph. Norv. 4, 86 (1946).

    MathSciNet  Google Scholar 

  50. L. Biermann, Zeit. f. Astroph. 28, 304 (1951).

    ADS  Google Scholar 

  51. R. Kippenhahn, Astrophys. J. 137, 664 (1963).

    ADS  MathSciNet  Google Scholar 

  52. B. R. Durney, and H. C. Spruit, Astrophys. J. 234, 1067 (1979).

    ADS  Google Scholar 

  53. L. L. Kitchatinov, and G. Rüdiger, Astron. Astrophys. 269, 581 (1993).

    ADS  Google Scholar 

  54. L. L. Kitchatinov, and G. Rüdiger, Astron. Astrophys. 299, 446 (1995).

    ADS  Google Scholar 

  55. T. Gastine, R. K. Yadav, J. Morin, A. Reiners, and J. Wicht, Mon. Not. R. Astron. Soc.-Lett. 438, L76 (2014), arXiv: 1311.3047.

    ADS  Google Scholar 

  56. N. A. Featherstone, and M. S. Miesch, Astrophys. J. 804, 67 (2015), arXiv: 1501.06501.

    ADS  Google Scholar 

  57. B. B. Karak, P. J. Käpylä, M. J. Käpylä, A. Brandenburg, N. Olspert, and J. Pelt, Astron. Astrophys. 576, A26 (2015), arXiv: 1407.0984.

    ADS  Google Scholar 

  58. J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, Heidelberg, 1979).

    MATH  Google Scholar 

  59. B. R. Durney, and I. W. Roxburgh, Sol. Phys. 16, 3 (1971).

    ADS  Google Scholar 

  60. G. Belvedere, and L. Paterno, Sol. Phys. 47, 525 (1976).

    ADS  Google Scholar 

  61. J. R. Kuhn, K. G. Libbrecht, and R. H. Dicke, Science 242, 908 (1988).

    ADS  Google Scholar 

  62. M. P. Rast, A. Ortiz, and R. W. Meisner, Astrophys. J. 673, 1209 (2008), arXiv: 0710.3121.

    ADS  Google Scholar 

  63. S. A. Balbus, J. Bonart, H. N. Latter, and N. O. Weiss, Mon. Not. R. Astron. Soc. 400, 176 (2009), arXiv: 0907.5075.

    ADS  Google Scholar 

  64. H. Köhler, Sol. Phys. 13, 3 (1970).

    ADS  Google Scholar 

  65. Y. Bekki, and T. Yokoyama, Astrophys. J. 835, 9 (2017), arXiv: 1612.00174.

    ADS  Google Scholar 

  66. L. L. Kitchatinov, and S. V. Olemskoy, Mon. Not. R. Astron. Soc. 423, 3344 (2012), arXiv: 1204.4261.

    ADS  Google Scholar 

  67. B. B. Karak, L. L. Kitchatinov, and A. R. Choudhuri, Astrophys. J. 791, 59 (2014), arXiv: 1402.1874.

    ADS  Google Scholar 

  68. J. Warnecke, P. J. Käpylä, M. J. Mantere, and A. Brandenburg, Astrophys. J. 778, 141 (2013), arXiv: 1301.2248.

    ADS  Google Scholar 

  69. G. Guerrero, P. K. Smolarkiewicz, A. G. Kosovichev, and N. N. Mansour, Astrophys. J. 779, 176 (2013), arXiv: 1310.8178.

    ADS  Google Scholar 

  70. D. Passos, P. Charbonneau, and M. Miesch, Astrophys. J. 800, L18 (2015), arXiv: 1502.01154.

    ADS  Google Scholar 

  71. D. O. Gough, and M. E. McIntyre, Nature 394, 755 (1998).

    ADS  Google Scholar 

  72. E. Forgács-dajka, and K. Petrovay, Sol. Phys. 203, 195 (2001).

    ADS  Google Scholar 

  73. M. Rempel, Astrophys. J. 622, 1320 (2005), arXiv: astroph/0604451.

    ADS  Google Scholar 

  74. H. Hotta, M. Rempel, and T. Yokoyama, Astrophys. J. 798, 51 (2015).

    ADS  Google Scholar 

  75. A. R. Choudhuri, arXiv: 2008.02983.

  76. H. K. Moffatt, Magnetic Field Generation in Electrically Conducing Fluids (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  77. E. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  78. P. Charbonneau, Solar and Stellar Dynamos (Springer, Heidelberg, 2013).

    Google Scholar 

  79. A. R. Choudhuri, Pramana 77, 77 (2011).

    ADS  Google Scholar 

  80. P. Charbonneau, Annu. Rev. Astron. Astrophys. 52, 251 (2014).

    ADS  Google Scholar 

  81. B. B. Karak, J. Jiang, M. S. Miesch, P. Charbonneau, and A. R. Choudhuri, Space Sci. Rev. 186, 561 (2014).

    ADS  Google Scholar 

  82. E. N. Parker, Astrophys. J. 122, 293 (1955).

    ADS  MathSciNet  Google Scholar 

  83. M. Steenbeck, F. Krause, and K.-H. Rädler, Z. Naturforsch. 21a, 1285 (1966).

    ADS  Google Scholar 

  84. H. Yoshimura, Astrophys. J. 201, 740 (1975).

    ADS  MathSciNet  Google Scholar 

  85. P. H. Roberts, and M. Stix, Astron. Astrophys. 18, 453 (1972).

    ADS  Google Scholar 

  86. G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy, Astrophys. J. 49, 153 (1919).

    ADS  Google Scholar 

  87. E. N. Parker, Astrophys. J. 121, 491 (1955).

    ADS  Google Scholar 

  88. J. O. Stenflo, and A. G. Kosovichev, Astrophys. J. 745, 129 (2012), arXiv: 1112.5226.

    ADS  Google Scholar 

  89. S. D’Silva, and A. R. Choudhuri, Astron. Astrophys. 272, 621 (1993).

    ADS  Google Scholar 

  90. H. C. Spruit, Astron. Astrophys. 98, 155 (1981).

    ADS  Google Scholar 

  91. A. R. Choudhuri, Astron. Astrophys. 239, 335 (1990).

    ADS  Google Scholar 

  92. A. R. Choudhuri, and P. A. Gilman, Astrophys. J. 316, 788 (1987).

    ADS  Google Scholar 

  93. A. R. Choudhuri, Sol. Phys. 123, 217 (1989).

    ADS  Google Scholar 

  94. Y. Fan, G. H. Fisher, and E. E. Deluca, Astrophys. J. 405, 390 (1993).

    ADS  Google Scholar 

  95. P. Caligari, F. Moreno-Insertis, and M. Schussler, Astrophys. J. 441, 886 (1995).

    ADS  Google Scholar 

  96. H. W. Babcock, Astrophys. J. 133, 572 (1961).

    ADS  Google Scholar 

  97. R. B. Leighton, Astrophys. J. 156, 1 (1969).

    ADS  Google Scholar 

  98. A. R. Choudhuri, M Schüssler, and M Dikpati, Astron. Astrophys. 303, L29 (1995).

    ADS  Google Scholar 

  99. M. Dikpati, and A. R. Choudhuri, Astron. Astrophys. 291, 975 (1994).

    ADS  Google Scholar 

  100. M. Dikpati, and A. R. Choudhuri, Sol. Phys. 161, 9 (1995).

    ADS  Google Scholar 

  101. A. R. Choudhuri, and M. Dikpati, Sol. Phys. 184, 61 (1999).

    ADS  Google Scholar 

  102. Y. M. Wang, N. R. J. Sheeley, and A. G. Nash, Astrophys. J. 383, 431 (1991).

    ADS  Google Scholar 

  103. B. R. Durney, Sol. Phys. 160, 213 (1995).

    ADS  Google Scholar 

  104. B. R. Durney, Astrophys. J. 486, 1065 (1997).

    ADS  Google Scholar 

  105. M. Dikpati, and P. Charbonneau, Astrophys. J. 518, 508 (1999).

    ADS  Google Scholar 

  106. D. Nandy, and A. R. Choudhuri, Astrophys. J. 551, 576 (2001), arXiv: astro-ph/0107466.

    ADS  Google Scholar 

  107. M. Küker, G. Rüdiger, and M. Schultz, Astron. Astrophys. 374, 301 (2001).

    ADS  Google Scholar 

  108. D. Nandy, and A. R. Choudhuri, Science 296, 1671 (2002).

    ADS  Google Scholar 

  109. P. Chatterjee, D. Nandy, and A. R. Choudhuri, Astron. Astrophys. 427, 1019 (2004).

    ADS  Google Scholar 

  110. G. Hazra, B. B. Karak, and A. R. Choudhuri, Astrophys. J. 782, 93 (2014), arXiv: 1309.2838.

    ADS  Google Scholar 

  111. L. Jouve, and A. S. Brun, Astron. Astrophys. 474, 239 (2007).

    ADS  Google Scholar 

  112. G. Guerrero, and E. M. de Gouveia Dal Pino, Astron. Astrophys. 485, 267 (2008).

    ADS  Google Scholar 

  113. A. R. Choudhuri, D. Nandy, and P. Chatterjee, Astron. Astrophys. 437, 703 (2005).

    ADS  Google Scholar 

  114. P. A. Gilman, and M. S. Miesch, Astrophys. J. 611, 568 (2004).

    ADS  Google Scholar 

  115. P. Garaud, and J. D. Garaud, Mon. Not. R. Astron. Soc. 391, 1239 (2008), arXiv: 0806.2551.

    ADS  Google Scholar 

  116. A. A. van Ballegooijen, and A. R. Choudhuri, Astrophys. J. 333, 965 (1988).

    ADS  Google Scholar 

  117. A. R. Choudhuri, Sci. China-Phys. Mech. Astron. 60, 019601 (2017), arXiv: 1612.02544.

    ADS  Google Scholar 

  118. L. Jouve, B. P. Brown, and A. S. Brun, Astron. Astrophys. 509, A32 (2010), arXiv: 0911.1947.

    ADS  Google Scholar 

  119. G. Hazra, J. Jiang, B. B. Karak, and L. Kitchatinov, Astrophys. J. 884, 35 (2019), arXiv: 1909.01286.

    ADS  Google Scholar 

  120. A. Muñoz-Jaramillo, D. Nandy, P. C. H. Martens, and A. R. Yeates, Astrophys. J. 720, L20 (2010).

    ADS  Google Scholar 

  121. A. R. Choudhuri, and G. Hazra, Adv. Space Res. 58, 1560 (2016), arXiv: 1511.03782.

    ADS  Google Scholar 

  122. A. R. Yeates, and A. Muñoz-Jaramillo, Mon. Not. R. Astron. Soc. 436, 3366 (2013), arXiv: 1309.6342.

    ADS  Google Scholar 

  123. M. S. Miesch, and M. Dikpati, Astrophys. J. 785, L8 (2014), arXiv: 1401.6557.

    ADS  Google Scholar 

  124. G. Hazra, A. R. Choudhuri, and M. S. Miesch, Astrophys. J. 835, 39 (2017), arXiv: 1610.02726.

    ADS  Google Scholar 

  125. G. Hazra, and M. S. Miesch, Astrophys. J. 864, 110 (2018), arXiv: 1804.03100.

    ADS  Google Scholar 

  126. J. Jiang, D. H. Hathaway, R. H. Cameron, S. K. Solanki, L. Gizon, and L. Upton, Space Sci. Rev. 186, 491 (2014), arXiv: 1408.3186.

    ADS  Google Scholar 

  127. A. Lemerle, P. Charbonneau, and A. Carignan-Dugas, Astrophys. J. 810, 78 (2015), arXiv: 1511.08548.

    ADS  Google Scholar 

  128. A. R. Choudhuri, Indian J. Phys. 88, 877 (2014).

    ADS  Google Scholar 

  129. A. R. Choudhuri, P. Chatterjee, and J. Jiang, Phys. Rev. Lett. 98, 131103 (2007), arXiv: astro-ph/0701527.

    ADS  Google Scholar 

  130. J. Jiang, P. Chatterjee, and A. R. Choudhuri, Mon. Not. R. Astron. Soc. 381, 1527 (2007), arXiv: 0707.2258.

    ADS  Google Scholar 

  131. M. Dikpati, and P. A. Gilman, Astrophys. J. 649, 498 (2006).

    ADS  Google Scholar 

  132. A. R. Yeates, D. Nandy, and D. H. Mackay, Astrophys. J. 673, 544 (2008), arXiv: 0709.1046.

    ADS  Google Scholar 

  133. N. O. Weiss, F. Cattaneo, and C. A. Jones, Geophys. Astrophys. Fluid Dyn. 30, 305 (1984).

    ADS  Google Scholar 

  134. A. R. Choudhuri, Astron. Astrophys. 253, 277 (1992).

    ADS  Google Scholar 

  135. P. Charbonneau, C. St-Jean, and P. Zacharias, Astrophys. J. 619, 613 (2005).

    ADS  Google Scholar 

  136. P. Charbonneau, G. Beaubien, and C. St-Jean, Astrophys. J. 658, 657 (2007).

    ADS  Google Scholar 

  137. S. M. Tobias, Astron. Astrophys. 322, 1007 (1997).

    ADS  Google Scholar 

  138. M. Küker, R. Arlt, and G. Rüdiger, Astron. Astrophys. 343, 977 (1999).

    ADS  Google Scholar 

  139. P. J. Bushby, Mon. Not. R. Astron. Soc. 371, 772 (2006).

    ADS  Google Scholar 

  140. D. Longcope, and A. R. Choudhuri, Sol. Phys. 205, 63 (2002).

    ADS  Google Scholar 

  141. H. Hotta, and T. Yokoyama, Astrophys. J. 714, L308 (2010), arXiv: 1004.2088.

    ADS  Google Scholar 

  142. P. Chatterjee, and A. R. Choudhuri, Sol. Phys. 239, 29 (2006).

    ADS  Google Scholar 

  143. A. Goel, and A. R. Choudhuri, Res. Astron. Astrophys. 9, 115 (2009), arXiv: 0712.3988.

    ADS  Google Scholar 

  144. A. R. Choudhuri, and B. B. Karak, Res. Astron. Astrophys. 9, 953 (2009), arXiv: 0907.3106.

    ADS  Google Scholar 

  145. A. J. H. Ossendrijver, and P. Hoyng, Astron. Astrophys. 313, 959 (1996).

    ADS  Google Scholar 

  146. B. B. Karak, Astrophys. J. 724, 1021 (2010), arXiv: 1009.2479.

    ADS  Google Scholar 

  147. G. Hazra, B. B. Karak, D. Banerjee, and A. R. Choudhuri, Sol. Phys. 290, 1851 (2015), arXiv: 1410.8641.

    ADS  Google Scholar 

  148. G. Hazra, and A. R. Choudhuri, Astrophys. J. 880, 113 (2019), arXiv: 1811.01363.

    ADS  Google Scholar 

  149. I. G. Usoskin, S. K. Solanki, and G. A. Kovaltsov, Astron. Astrophys. 471, 301 (2007).

    ADS  Google Scholar 

  150. A. R. Choudhuri, and B. B. Karak, Phys. Rev. Lett. 109, 171103 (2012), arXiv: 1208.3947.

    ADS  Google Scholar 

  151. B. B. Karak, and A. R. Choudhuri, Res. Astron. Astrophys. 13, 1339 (2013), arXiv: 1306.5438.

    ADS  Google Scholar 

  152. A. Pouquet, U. Frisch, and J. Léorat, J. Fluid Mech. 77, 321 (1976).

    ADS  Google Scholar 

  153. L. L. Kitchatinov, V. V. Pipin, and G. Rüdiger, Astro. Nachr. 315, 157 (1994).

    ADS  Google Scholar 

  154. M. Rempel, Astrophys. J. 647, 662 (2006), arXiv: astro-ph/0604446.

    ADS  Google Scholar 

  155. B. B. Karak, and A. R. Choudhuri, Sol. Phys. 278, 137 (2012), arXiv: 1111.1540.

    ADS  Google Scholar 

  156. G. Hazra, and A. R. Choudhuri, Mon. Not. R. Astron. Soc. 472, 2728 (2017), arXiv: 1708.05204.

    ADS  Google Scholar 

  157. D. Passos, M. Miesch, G. Guerrero, and P. Charbonneau, Astron. Astrophys. 607, A120 (2017), arXiv: 1702.02421.

    ADS  Google Scholar 

  158. A. S. Eddington, Observatory 48, 73 (1925).

    ADS  Google Scholar 

  159. P. A. Sweet, Mon. Not. R. Astron. Soc. 110, 548 (1950).

    ADS  Google Scholar 

  160. R. Kippenhahn, and A. Weigert, Stellar Structure and Evolution (Springer-Verlag, Heidelberg, 1990).

    MATH  Google Scholar 

  161. A. Rai Choudhuri, and S. Konar, Mon. Not. R. Astron. Soc. 332, 933 (2002), arXiv: astro-ph/0108229.

    ADS  Google Scholar 

  162. S. Konar, and A. R. Choudhuri, Mon. Not. R. Astron. Soc. 348, 661 (2004), arXiv: astro-ph/0304490.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Rai Choudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, A.R. The meridional circulation of the Sun: Observations, theory and connections with the solar dynamo. Sci. China Phys. Mech. Astron. 64, 239601 (2021). https://doi.org/10.1007/s11433-020-1628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1628-1

Keywords

Navigation