Skip to main content
Log in

New Invariant Einstein–Randers Metrics on Stiefel Manifolds\(V_{2p}\mathbb {R}^n={\mathrm {S}}{\mathrm O}(n)/ {\mathrm {S}}{\mathrm O} (n-2p)\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider invariant Einstein–Randers metrics on the Stiefel manifolds \(V_k\mathbb {R}^n\) of all orthonormal k-frames in \(\mathbb {R}^n\), which is diffeomorphic to the homogeneous space \({\mathrm {S}}{\mathrm O}(n)/{\mathrm {S}}{\mathrm O}(n-k)\). We prove that for \(2\le p\le \frac{2}{5}n-1\), there are four different families of \({\mathrm {S}}{\mathrm O}(n)\)-invariant Einstein–Randers metrics on \({\mathrm {S}}{\mathrm O}(n)/{\mathrm {S}}{\mathrm O}(n-2p)\) whose corresponding Riemannian metrics are determined by \({\mathrm {A}}{\mathrm {d}}(U(p)\times {\mathrm {S}}{\mathrm O}(n-2p))\)-invariant inner products on the tangent space of \({\mathrm {S}}{\mathrm O}(n)/{\mathrm {S}}{\mathrm O}(n-2p)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvanitiyeorgos, A.: An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, vol. 22. American Mathematical Society, Providence (2003)

    Google Scholar 

  2. Arvanitoyeorgos, A., Chrysikos, I.: Motion of charged particles and homogeneous geodesics in Kähler C spaces with two isotropy summands. Tokyo J. Math. 32(2), 487–500 (2009)

    Article  MathSciNet  Google Scholar 

  3. Alekseevsky, D.V., Dotti, I., Ferraris, C.: Homogeneous Ricci positive 5-manifolds. Pac. J. Math. 175(1), 1–12 (1996)

    Article  MathSciNet  Google Scholar 

  4. Arvanitoyeorgos, A., Dzhepko, V.V., Nikonorov, YuG: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups. Can. J. Math. 61(6), 1201–1213 (2009)

    Article  MathSciNet  Google Scholar 

  5. Arvanitoyeorgos, A., Sakane, Y., Statha, M.: New homogeneous Einstein metrics on Stiefel manifolds. Differ. Geom. Appl. 35(S1), 2–18 (2014)

    Article  MathSciNet  Google Scholar 

  6. Arvanitoyeorgos, A., Sakane, Y., Statha, M.: Homogeneous Einstein metrics on Stiefel manifolds associated to flag manifolds with two isotropy summands. J. Symb. Comp. 1, 12 (2020). https://doi.org/10.1016/j.jsc.2019.08.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Bohm, C.: Homogeneous Einstein metrics and simplicial complexes. J. Differ. Geom. 67(1), 79–165 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bohm, C., Wang, M., Ziller, W.: A variational approach for compact homogeneous Einstein manifolds. Geom. Func. Anal. 14(4), 681–733 (2004)

    Article  MathSciNet  Google Scholar 

  9. Back, A., Hsiang, W.Y.: Equivariant geometry and Kervaire spheres. Trans. Am. Math. Soc. 304(1), 207–227 (1987)

    Article  MathSciNet  Google Scholar 

  10. Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry. In: Bao, D., Bryant, R., Chern, S.S., Shen, Z. (eds.) A Sample of Riemannian–Finsler Geometry, pp. 197–260. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  11. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66, 377–435 (2004)

    Article  MathSciNet  Google Scholar 

  12. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1986)

    MATH  Google Scholar 

  13. Chen, Z., Deng, S., Liang, K.: Einstein–Randers metrics on some homogeneous manifolds. Nonlinear Anal. 91, 114–120 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chen, Z., Deng, S., Liang, K.: Homogeneous manifolds admitting non-Riemannian Einstein–Randers metrics. Sci. China Math. 58(7), 1473–1482 (2015)

    Article  MathSciNet  Google Scholar 

  15. Deng, S., Hou, Z.: Homogeneous Einstein–Randers metrics on symmetric space. C. R. Acad. Sci. Paris Ser. 1(367), 1169–1172 (2009)

    Article  Google Scholar 

  16. Jensen, G.: Einstein metrics on principal fibre bundles. J. Differ. Geom. 8, 599–614 (1973)

    Article  MathSciNet  Google Scholar 

  17. Kang, Y., Chen, Z.: Einstein Riemannian metrics and Einstein–Randers metrics on a class of homogeneous manifolds. Nonlinear Anal. 107, 86–91. Corrigendum in Nonlinear Anal. 130(2016), 408–409 (2014)

  18. Kobayashi, S.: Topology of positively pinched Kaehler manifolds. Tohoku Math. J. 15, 121–139 (1963)

    Article  MathSciNet  Google Scholar 

  19. Liu, X., Deng, S.: Homogeneous Einstein–Randers metrics on Aloff–Wallach spaces. J. Geom. Phys. 98, 196–200 (2015)

    Article  MathSciNet  Google Scholar 

  20. Najafi, B., Tayebi, A.: A family of Einstein Randers metrics. Int. J. Geom. Methods Mod. Phys. 8(5), 1021–1029 (2011)

    Article  MathSciNet  Google Scholar 

  21. Ohmura, I.: Einstein metrics on certain homogeneous manifolds. Master thesis, Osaka University (1987) (in Japanese)

  22. Sagle, A.: Some homogeneous Einstein manifolds. Nagoya Math. J. 39, 81–106 (1970)

    Article  MathSciNet  Google Scholar 

  23. Statha, M.: Invariant metrics on homogeneous spaces with equivalent isotropy summands. Toyama Math. J. 38, 35–60 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Tan, J., Xu, N.: Homogeneous Einstein–Randers metrics on some Stiefel manifolds. J. Geom. Phys. 131, 182–188 (2018)

    Article  MathSciNet  Google Scholar 

  25. Wang, H., Deng, S.: Some Einstein–Randers metrics on homogeneous spaces. Nonlinear Anal. 72(12), 4407–4414 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wang, H., Deng, S.: Left invariant Einstein–Randers metrics on compact Lie groups. Can. Math. Bull. 55(4), 870–881 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wang, H., Deng, S.: Invariant Einstein–Randers metrics on Stiefel manifolds. Nonlinear Anal. Real World Appl. 14(1), 594–600 (2013)

    Article  MathSciNet  Google Scholar 

  28. Wang, H., Huang, L., Deng, S.: Homogeneous Einstein–Randers metrics on spheres. Nonlinear Anal. 74(17), 6295–6301 (2011)

    Article  MathSciNet  Google Scholar 

  29. Wang, M.: Einstein metrics from symmetry and bundle constructions. In: Surveys in Differential Geometry: Essays on Einstein Manifolds. Surveys in Differential Geometry, vol. 6. International Press, Boston (1999)

  30. Wang, M.: Einstein metrics from symmetry and bundle constructions: a sequel, In: Differential Geometry: Under the Influence of S.-S. Chern. Advanced Lectures in Mathematics, vol. 22, pp. 253-309. Higher Education Press/International Press, Boston (2012)

  31. Wang, M., Ziller, W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986)

    Article  MathSciNet  Google Scholar 

  32. Yan, Z., Deng, S.: On homogeneous Einstein \((\alpha,\beta )\)-metrics. J. Geom. Phys. 103, 20–36 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors want to express their sincere thanks to the referees for their valuable remarks and suggestions, which made this paper more readable. This work is supported in part by National Natural Science Foundation of China (Nos. 11571182, 11901300 and 11931009) and Natural Science Research of Jiangsu Education Institutions of China (No. 19KJB110015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, C. & Chen, Z. New Invariant Einstein–Randers Metrics on Stiefel Manifolds\(V_{2p}\mathbb {R}^n={\mathrm {S}}{\mathrm O}(n)/ {\mathrm {S}}{\mathrm O} (n-2p)\). Results Math 76, 19 (2021). https://doi.org/10.1007/s00025-020-01333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01333-x

Keywords

Mathematics Subject Classification

Navigation