Skip to main content

Advertisement

Log in

Copolymerization of butyl acrylate with methyl methacrylate in a bubble column reactor and the use of copolymer in corrosion protection

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, copolymerization of methyl methacrylate (MMA) with n-butyl acrylate (BA) in a bubble column reactor using benzoyl peroxide as free radical initiator, at a temperature over 85 °C, is presented. This mode of copolymerization keeps an inert atmosphere throughout the entire reaction and contributes to proper mixing of the monomers. Higher pressure of the bubbling ensures the faster contact of the species, and a higher conversion was obtained in a shorter reaction time. The conversion of monomer at 124 Pa after 210 min is total, which is particularly noteworthy due to the absence of residual monomer that represents hazardous compounds, with negative impact upon employees and end-user safety. Higher conversions are obtained at 96 °C, 124 Pa nitrogen bubble pressure, 60/40% moles monomer ratio BA/MMA and 2% POB. The molar mass Mw, Mn and PDI decrease with the increase in temperature quite linearly. In the absence of nitrogen bubbling, the copolymer composition is approximately the same as in the feeding mixture. The corrosion protection efficiency of steel painted with these acrylic coatings was carried out by means of OCP and potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bella F, Porcarelli L, Mantione D, Gerbaldi C, Barolo C, Grtzelf M, Mecerreyes D (2020) A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative. Chem Sci 11:1485–1493. https://doi.org/10.1039/c9sc05596g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iliescu S, Ilia G, Pascariu A, Plesu N (2007) Organic solvent-free synthesis of phosphorus-containing polymers. Pure Appl Chem 79(11):1879–1884. https://doi.org/10.1351/pac200779111879

    Article  CAS  Google Scholar 

  3. Sahu PK, Pandey RK, Dwivedi R, Mishra VN, R. Prakash R (2020) Polymer/Graphene oxide nanocomposite thin film for NO2sensor: an in situ investigation of electronic. morphological, structural, and spectroscopic properties. Sci Rep 10:2981. https://doi.org/10.1038/s41598-020-59726-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Falco M, Castro L, Nair JR, Federico Bella F, Bardé F, Meligrana G, Gerbaldi C (2019) UV-cross-linked composite polymer electrolyte for high-rate ambient temperature llithium batteries. ACS Appl Energy Mater 2:1600−1607. https://doi.org/10.1021/acsaem.8b02185

    Article  CAS  Google Scholar 

  5. Popa S, Iliescu S, Ilia G, Plesu N, Popa A, Visa A, Macarie L (2017) Solid polymer electrolytes based on phosphorus containing polymers for lithium polymer batteries. Eur Polym J 94:286–298. https://doi.org/10.1016/j.eurpolymj.2017.07.017

    Article  CAS  Google Scholar 

  6. Piana G, Bella F, Gerbaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947. https://doi.org/10.1016/j.est.2019.100947

    Article  Google Scholar 

  7. Galliano S, Bella F, Matteo Bonomo M, Viscardi G, Gerbaldi C, Gerrit Boschloo G, Barolo C (2020) Hydrogel electrolytes based on xanthan gum: Green route towards stable dye-sensitized solar cells. Nanomaterials 10:1585. https://doi.org/10.3390/nano10081585

    Article  CAS  PubMed Central  Google Scholar 

  8. Xu S, Fan Z, Yang S, Zhao Y, Pan L (2021) Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem Eng J 404:126064. https://doi.org/10.1016/j.cej.2020.126064

    Article  CAS  Google Scholar 

  9. Arthur DE, Achika J, Ameh P, Anya C (2013) A review on the assessment of polymeric materials used as corrosion inhibitor of metals and alloys. Int J Ind Chem 4:2. https://doi.org/10.1186/2228-5547-4-2

    Article  Google Scholar 

  10. Leidheiser H (1982) Corrosion of painted metals—a review. Corrosion 38:374–383. https://doi.org/10.5006/1.3581899

    Article  CAS  Google Scholar 

  11. Iliescu S, Avram E, Pascariu A, Plesu N, Popa A, Ilia G (2011) New technique for the synthesis of polyphosphoesters. Macromolecul Res 19:1186–1191. https://doi.org/10.1007/s13233-011-1111-6

    Article  CAS  Google Scholar 

  12. Patel M, Mestry S, Phalak G, Mhaske S (2020) Novel catechol-derived phosphorus-based precursors for coating applications. Polym Bull 77:2183–2203. https://doi.org/10.1007/s00289-019-02855-3

    Article  CAS  Google Scholar 

  13. Gaikwad MS, Kusumkar VV, Yemul OS, Hundiwale DG, Mahulikar PP (2019) Eco-friendly waterborne coating from bio-based polyester amide resin. Polym Bull 76:2743–2763. https://doi.org/10.1007/s00289-018-2511-y

    Article  CAS  Google Scholar 

  14. Grundmeier G, Schmidt W, Stratmann M (2000) Corrosion protection by organic coatings: Electrochemical mechanism and novel methods of investigation. Electrochim. Acta 45:2515–2533. https://doi:https://doi.org/10.1016/S0013-4686(00)00348-0

  15. Haibin XuH, Zhang Y (2019) A review on conducting polymers and nanopolymer composite coatings for steel corrosion protection. Coatings 9:807. https://doi.org/10.3390/coatings9120807

    Article  CAS  Google Scholar 

  16. Charamzova I, Vinklarek J, Honzicek J (2018) Effect of primary driers on oxidative drying of high-solid alkyd binder: investigation of thickness effects by mechanical tests and infrared spectroscopy. Prog Org Coat 125:177–185. https://doi.org/10.1016/j.porgcoat.2018.09.001

    Article  CAS  Google Scholar 

  17. Das P, Sharma N, Puzari A, Kakati DK, Devi N (2020) Synthesis and characterization of neem (Azadirachta indica) seed oil-based alkyd resins for efficient anticorrosive coating application. Polym Bull. https://doi.org/10.1007/s00289-020-03120-8

    Article  Google Scholar 

  18. Guo F, Su X, Hou G, Li P (2012) Bioinspired fabrication of stable and robust superhydrophobic steel surface with hierarchical flowerlike structure. Colloids Surf A 401:61–67. https://doi.org/10.1016/j.colsurfa.2012.03.013

    Article  CAS  Google Scholar 

  19. Weng C-J, Chang C-H, Peng C-W, Chen S-W, Yeh J-M, Hsu C-L, Wei Y (2011) Advanced anti-corrosive coatings prepared from the mimicked Xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability. Chem Mater 23:2075–2208. https://doi.org/10.1021/cm1030377

    Article  CAS  Google Scholar 

  20. Ghasemi-Kahrizsangi A, Neshati J, Shariatpanahi H, Akbarinezhad E (2015) Effect of SDS modification of carbon black nanoparticles on corrosion protection behavior of epoxy nanocomposite coatings. Polym Bull 72:2297–2310. https://doi.org/10.1007/s00289-015-1406-4

    Article  CAS  Google Scholar 

  21. Krishnan S, Anandarup H, Kuppan C, Goswami A, Chavali M, Muthukaruppan A (2017) Silane-functionalized polybenzoxazines: a superior corrosion resistant coating for steel plates. Mater Corros 68:1343–1354. https://doi.org/10.1002/maco.201709587

    Article  CAS  Google Scholar 

  22. Xavier JR (2020) High protection performance of vanadium pentoxide-embedded polyfuran/epoxy coatings on mild steel. Polym Bull. https://doi.org/10.1007/s00289-020-03400-3

    Article  Google Scholar 

  23. Ganash A, Almonshi R (2018) Effects of types and the ratio of poly(o-phenetidine)/TiO2 nanocomposite as anticorrosive coating. Polym Bull 75:3859–3881. https://doi.org/10.1007/s00289-017-2241-6

    Article  CAS  Google Scholar 

  24. Kowalski D, Ueda M, Ohtsuka T (2009) Self-healing ability of conductive polypyrrole coating with artificial defect. ECS Trans 16:177–181. https://doi.org/10.1149/1.3229965

    Article  CAS  Google Scholar 

  25. Plesu N, Ilia G, Pascariu A, Vlase G (2006) Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends. Synth Metals 156:230–238. https://doi.org/10.1016/J.SYNTHMET.2005.11.006

    Article  CAS  Google Scholar 

  26. Choundary M, Varma IK (1985) Copolymers of 2-hydroxyethyl methacrylate and alkyl methacrylates. I. Synthesis and characterization. J Polym Sci A: Polym Chem 23:1917–1929. https://doi.org/10.1002/pol.1985.170230707

    Article  Google Scholar 

  27. Madruga E, San Roman J, Lavia MA (1986) Radical copolymerization of acrylic monomers. VIII. Copolymerization of methyl methacrylate with methyl α-p-chlorobenzylacrylate and methyl methacrylate with methyl α-p-methoxybenzylacrylate. J Polym Sci Polym Chem 24:1379–1387. https://doi.org/10.1002/pola.1986.080240620

    Article  CAS  Google Scholar 

  28. Ramos-Fernandez JM, Guillem C, Lopez-Buendıa A, Paulis M, Asua JM (2011) Synthesis of poly-(BA-co-MMA) latexes filled with SiO2 for coating in construction applications. Prog Organic Coat 72:438–442. https://doi.org/10.1016/j.porgcoat.2011.05.017

    Article  CAS  Google Scholar 

  29. Birtane H, Sen F, Bozdag B, Kahraman MV (2020) Antibacterial UV-photocured acrylic coatings containing quaternary ammonium salt. Polym Bull. https://doi.org/10.1007/s00289-020-03287-0

    Article  Google Scholar 

  30. Brosse JC, Gauthier JM, Lenain JC (1983) Synthese par voie radicalaire de polymeres a extremites hydroxyleées, 11. Etude de la copolymérisation du méthacrylate de methyle avec divers acrylates et methacrylates. Deétermination des rapports de reactivite. Makromol Chem 184:505–517. https://doi.org/10.1002/macp.1983.021840305

    Article  CAS  Google Scholar 

  31. Bhabhe MD, Calvankar PS, Desai VM, Athawale VD (1995) Copolymers of methyl methacrylate and acrylate comonomers: synthesis and characterization. J Appl Polym Sci 56:485–494. https://doi.org/10.1002/app.1995.070560410

    Article  CAS  Google Scholar 

  32. Maya-Cornejo J, Rodríguez-Gómez FJ, Molina GA, Galindo-de-la-Rosa J, Ledesma-García J, Hernández-Martínez AR, Esparza R, Pérez R, Estévez M (2019) Electrochemical study of a hybrid polymethyl methacrylate coating using sio2 nanoparticles toward the mitigation of the corrosion in marine environments. Materials 12:3216. https://doi.org/10.3390/ma12193216

    Article  CAS  PubMed Central  Google Scholar 

  33. Fernandez-Garcia M, Madruga EL (1997) Kinetic study of high-conversion copolymerization of butyl acrylate with methyl methacrylate in solution. J Polym Sci A Polym Chem 35:1961–1965. https://doi.org/10.1002/(SICI)1099-0518(19970730)35:10%3c1961::AID-POLA11%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  34. Fernandez-Garcia M, Cuervo-Rodriguez R, Madruga EL (1999) Glass transition temperatures of butyl acrylate-methyl methacrylate copolymers. J Polym Sci B: Polym Phys 37:2512–2520. https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17%3c2512::AID-POLB22%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  35. Ziegler MJ, Matyjaszewski K (2001) Atom transfer radical copolymerization of methyl methacrylate and n-butyl acrylate. Macromolecules 34:415–424. https://doi.org/10.1021/ma001182k

    Article  CAS  Google Scholar 

  36. Erola MOA, Suvanto S, Pakkanen TT (2015) Influence of compositions and polymerization processes on morphologies, molar mass distributions, and phase structures of n-butyl acrylate-methyl methacrylate copolymers. J Appl Polym Sci 132:41467. https://doi.org/10.1002/app.41467

    Article  CAS  Google Scholar 

  37. Nashy EL-SHA, Essa MM, Hussain AI (2012) Synthesis and application of methyl methacrylate/butyl acrylate copolymer nanoemulsions as efficient retanning and lubricating agents for chrome-tanned leather. J Appl Polym Sci 124:3293–3301. https://doi.org/10.1002/app.35208

    Article  CAS  Google Scholar 

  38. Tanishima M, Goto A, Lei L, Ohtsuki A, Kaji H, Nomura A, Tsujii Y, Yamaguchi Y, Komatsu H, Miyamoto M (2014) Macromolecular architectures designed by living radical polymerization with organic catalysts. Polymers 6:311–326. https://doi.org/10.3390/polym6020311

    Article  CAS  Google Scholar 

  39. Sengupta S, Das T, Ghorai UK, Bandyopadhyay A (2017) Copolymers from methyl methacrylate and butyl acrylate with hyperbranched architecture. J Appl Polym Sci 134:45356. https://doi.org/10.1002/APP.45356

    Article  Google Scholar 

  40. Popa S, Csunderlik C, Jascanu V, Jurcau D, Plesu N (2004) Influence of temperature on the polymerization solution of acrylates in a bubble column reactor. Mat Plast 41:62–65

    CAS  Google Scholar 

  41. Popa S, Jascanu V, Jurcau D, Plesu N (2003) The influence of some parameters on the column copolymerization with bubbling. Rev Chim(Bucharest) 54(7):595–598.

    Google Scholar 

  42. Asano S, Maki T, Nakayama R, Utsunomiya R, Muranaka Y, Kuboyama T, Mae K (2017) Precise analysis, and control of polymerization kinetics using a microflow reactor. Chem Eng Proc 119:73–80. https://doi.org/10.1016/j.cep.2017.05.016

    Article  CAS  Google Scholar 

  43. De Rybel N, Van Steenberge HM, Reyniers M-F, Dhooge DR, Marin GB (2018) How chain length dependencies interfere with the bulk RAFT polymerization rate and microstructural control. Chem Eng Sci 177:163–179. https://doi.org/10.1016/j.ces.2017.11.043

    Article  CAS  Google Scholar 

  44. Gonzales I, Paulis M, de la Cal JC, Asua JM (2008) Kinetic and microstructural study of the continuous emulsion polymerization of an all-acrylics formulation in the loop reactor. Chem Eng J 142:199–208. https://doi.org/10.1016/j.cej.2008.02.004

    Article  CAS  Google Scholar 

  45. Bonnefond A, Paulis M, Leiza JR (2011) Kinetics of the emulsion copolymerization of MMA/BA in the presence of sodium montmorillonite. App Clay Sci 51:110–116. https://doi.org/10.1016/j.clay.2010.11.011

    Article  CAS  Google Scholar 

  46. Qiu L, Wang K, Zhu S, Lu Y, Luo G (2016) Kinetic study of acrylic acid polymerization with microreactor platform. Chem Eng J 284:233–239. https://doi.org/10.1016/j.cej.2015.08.055

    Article  CAS  Google Scholar 

  47. Chen Y, Sajjadi S (2009) Particle formation and growth in ab-initio emulsifier-free emulsion polymerization under monomer-starved conditions. Polymer 50:357–365. https://doi.org/10.1016/j.polymer.2008.11.013

    Article  CAS  Google Scholar 

  48. Xu Q, Zhu YF, Yuan Z, Tang H-D (2015) Atom transfer radical polymerization of methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter. Chinese Chem Lett 26:773–778. https://doi.org/10.1016/j.cclet.2015.03.012

    Article  CAS  Google Scholar 

  49. Ballard N, Aguirre M, Asua JM (2016) Effect of nanoconfinement on kinetics and microstructure of poly(butyl acrylate) synthesized by microemulsion polymerization. Chem Eng J 304:667–678. https://doi.org/10.1016/j.cej.2016.07.005

    Article  CAS  Google Scholar 

  50. Kanmuri S, Moholkar VS (2010) Mechanistic aspects of sonochemical copolymerization of butyl acrylate and methyl methacrylate. Polymer 51:3249–3261. https://doi.org/10.1016/j.polymer.2010.05.011

    Article  CAS  Google Scholar 

  51. Shim SE, Cha Y, Byun J, Choe S (1999) Size control of polystyrene beads by multistage seeded emulsion polymerization. J Appl Polym Sci 71:2259–2269. https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13%3c2259

    Article  CAS  Google Scholar 

  52. Hong CK, Hwang M-J, Ryu D-W, Moon H (2008) Preparation of copolymer particles by emulsion polymerization using a polymerizable amphiphilic macromonomer. Colloid Surface A 331:250–256. https://doi.org/10.1016/j.colsurfa.2008.08.014

    Article  CAS  Google Scholar 

  53. Morya NK, Iyer PK, Moholkar VS (2008) A physical insight into sonochemical emulsion polymerization with cavitation bubble dynamics. Polymer 49:1910–1925. https://doi.org/10.1016/j.polymer.2008.02.032

    Article  CAS  Google Scholar 

  54. Cunningham ID, Fassihi K (2005) Kinetics and mechanism of methyl acrylate homo- and co-polymerisation catalyzed by cyclopentadienyltitanium trichloride-MAO. J Molec Cat A Chem 232:187–192. https://doi.org/10.1016/j.molcata.2005.01.032

    Article  CAS  Google Scholar 

  55. Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35:8210–8219. https://doi.org/10.1021/acs.langmuir.9b00041

    Article  CAS  PubMed  Google Scholar 

  56. Popa S, Jurcău D (2004) Compoziţie pe bază de copolimeri acrilici şi procedeu de obţinere a acesteia (Composition based on acrylic copolymers and process for the preparation thereof). Romanian Pat. 118877B.

  57. Piana G, Ricciardi M, Bella F, Cucciniello F, Proto A, Gerbaldi C (2020) Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem Eng J 382:122934. https://doi.org/10.1016/j.cej.2019.122934

    Article  CAS  Google Scholar 

  58. Ballard N, Aguirre M, Simula A, Leiza JR, van Es S, Asua JM (2017) Nitroxide mediated suspension polymerization of methacrylic monomers. Chem Eng J 316:655–662. https://doi.org/10.1016/j.cej.2017.02.006

    Article  CAS  Google Scholar 

  59. Krys P, Matyjaszewski K (2017) Kinetics of atom transfer polymerization. Eur Polym J 89:482–523. https://doi.org/10.1016/j.eurpolymj.2017.02.034

    Article  CAS  Google Scholar 

  60. Roos SG, Muller AHE, Matyjaszewski K (1999) Copolymerization of n-butyl acrylate with methyl methacrylate and PMMA macromonomers: comparison of reactivity ratios in conventional and atom transfer radical copolymerization. Macromolecules 32:8331–8335. https://doi.org/10.1021/ma9819337

    Article  CAS  Google Scholar 

  61. Singh SK, Tambe SP, Gunasekaran G, Raja VS, Kumar D (2009) Electrochemical impedance study of thermally sprayable polyethylene coatings. Corr Sci 51:595–601. https://doi.org/10.1016/j.corsci.2008.11.025

    Article  CAS  Google Scholar 

  62. Santana JJ, Gonzalez JE, Morales J, GonzAlez S, Souto RM (2012) Evaluation of ecological organic paint coatings electrochemical impedance spectroscopy. Int J Electrochem Sci 7:6489–6500

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Plesu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, S., Mosoarca, G., Macarie, L. et al. Copolymerization of butyl acrylate with methyl methacrylate in a bubble column reactor and the use of copolymer in corrosion protection. Polym. Bull. 79, 763–783 (2022). https://doi.org/10.1007/s00289-020-03502-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03502-y

Keywords

Navigation