Skip to main content

Advertisement

Log in

Metabolome Analysis of Selective Inactivation of Human Melanoma and Normal Cells by Cold Atmospheric Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cold atmospheric plasma (CAP) is a novel technology which is widely used in the biomedical field and has developed quickly over the past few years, especially in cancer therapy. Compared to traditional anti-cancer approaches, CAP treatment shows a selective anti-cancer mode which makes CAP a promising anti-cancer treatment modality. However, the underlying mechanism of this selective cytotoxicity is not fully elaborated. In this study, we demonstrated that A375 human melanoma cells were more sensitive to CAP treatment than HaCaT cells and compared the differences in metabolites of these two cell lines after CAP treatment. Using ultra-high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) approach, we identified 361 changes (metabolites) in HaCaT cells and 1531 changes in A375 cells. Further research using KEGG pathway analysis found that purine metabolism and Pantothenate and CoA biosynthesis were highly correlated with changes of HaCaT cells and A375 cells after CAP treatment. Our results shed light on the mechanism of selective cytotoxicity in the metabolites' aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAP:

Cold atmospheric plasma

UHPLC-QTOF-MS:

Ultra-high performance liquid tandem chromatography quadrupole time of flight mass spectrometry

POS:

Positive ion mode

NEG:

Negative ion mode

RONS:

Reactive oxygen and nitrogen species

DMEM:

Dulbecco's Modified Eagle's Medium

AQP:

Aquaporins

VIP:

Variable importance in the projection

References

  1. Bárdos L, Baránková H (2010) Cold atmospheric plasma: sources, processes, and applications. Thin Solid Films 518(23):6705–6713

    Article  Google Scholar 

  2. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Jv D, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11(11):115012

    Article  Google Scholar 

  3. Klämpfl TG, Isbary G, Shimizu T, Li Y-F, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt H-U (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78(15):5077–5082

    Article  Google Scholar 

  4. von Woedtke T, Metelmann HR, Weltmann KD (2014) Clinical plasma medicine: state and perspectives ofin vivoapplication of cold atmospheric plasma. Contrib Plasma Phys 54(2):104–117

    Article  Google Scholar 

  5. Yan D, Sherman JH, Keidar M (2017) Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8(9):15977–15995

    Article  Google Scholar 

  6. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105(9):1295–1301

    Article  CAS  Google Scholar 

  7. Iseki S, Nakamura K, Hayashi M, Tanaka H, Kondo H, Kajiyama H, Kano H, Kikkawa F, Hori M (2012) Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett 100(11):113702

    Article  Google Scholar 

  8. Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano H, Kikkawa F, Hori M (2011) Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule. AKT Kinase Plasma Medicine 1(3–4):265–277

    Article  Google Scholar 

  9. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27(2):163–176

    Article  CAS  Google Scholar 

  10. Liedtke KR, Diedrich S, Pati O, Freund E, Flieger R, Heidecke CD, Partecke LI, Bekeschus S (2018) Cold physical plasma selectively elicits apoptosis in murine pancreatic cancer cells in vitro and in ovo. Anticancer Res 38(10):5655–5663

    Article  CAS  Google Scholar 

  11. Gümbel D, Suchy B, Wien L, Gelbrich N, Napp M, Kramer A, Ekkernkamp A, Daeschlein G, Stope MB (2017) Comparison of cold atmospheric plasma devices’ efficacy on osteosarcoma and fibroblastic in vitro cell models. Anticancer Res 37(10):5407–5414

    PubMed  Google Scholar 

  12. Gweon B, Kim M, Kim DB, Kim D, Kim H, Jung H, Shin JH, Choe W (2011) Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett 99(6):063701

    Article  Google Scholar 

  13. Yan D, Talbot A, Nourmohammadi N, Sherman JH, Cheng X, Keidar M (2015) Toward understanding the selective anticancer capacity of cold atmospheric plasma—a model based on aquaporins (Review). Biointerphases 10(4):040801

    Article  Google Scholar 

  14. Weiss M, Gümbel D, Hanschmann EM, Mandelkow R, Gelbrich N, Zimmermann U, Walther R, Ekkernkamp A, Sckell A, Kramer A, Burchardt M, Lillig CH, Stope MB (2015) Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS ONE 10(7):e0130350

    Article  Google Scholar 

  15. Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK (2019) Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers 11(7):1030

    Article  Google Scholar 

  16. Ma Y, Ha CS, Hwang SW, Lee HJ, Kim GC, Lee K-W, Song K (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ros stress-response pathways. PLoS ONE 9(4):e91947

    Article  Google Scholar 

  17. Kim SJ, Chung TH (2016) Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep 6(1):20332

    Article  CAS  Google Scholar 

  18. Yusupov M, Razzokov J, Cordeiro RM, Bogaerts A (2019) Transport of reactive oxygen and nitrogen species across aquaporin: a molecular level picture. Oxid Medi Cell Longev 2019:2930504

    Google Scholar 

  19. Xu D, Xu Y, Cui Q, Liu D, Liu Z, Wang X, Yang Y, Feng M, Liang R, Chen H, Ye K, Kong MG (2018) Cold atmospheric plasma as a potential tool for multiple myeloma treatment. Oncotarget 9(26):18002

    Article  Google Scholar 

  20. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Processes Polym 5(6):503–533

    Article  CAS  Google Scholar 

  21. Xu D, Ning N, Xu Y, Wang B, Cui Q, Liu Z, Wang X, Liu D, Chen H, Kong MG (2019) Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells. Cancer Cell Int 19:135

    Article  Google Scholar 

  22. Xu D, Xu Y, Ning N, Cui Q, Liu Z, Wang X, Liu D, Chen H, Kong MG (2018) Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells. Cancer Cell Int 18:42

    Article  Google Scholar 

  23. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669

    Article  CAS  Google Scholar 

  24. Battelli MG, Polito L, Bortolotti M, Bolognesi A (2016) Xanthine oxidoreductase in cancer: more than a differentiation marker. Cancer Med 5(3):546–557

    Article  CAS  Google Scholar 

  25. Yin J, Ren W, Huang X, Deng J, Li T, Yin Y (2018) Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in immunology 9:1697

    Article  Google Scholar 

  26. Zhong SY, Dong YY, Liu DX, Xu DH, Xiao SX, Chen HL, Kong MG (2016) Surface air plasma-induced cell death and cytokine release of human keratinocytes in the context of psoriasis. Br J Dermatol 174(3):542–552

    Article  CAS  Google Scholar 

  27. Schneider C, Gebhardt L, Arndt S, Karrer S, Zimmermann JL, Fischer MJM, Bosserhoff AK (2019) Acidification is an essential process of cold atmospheric plasma and promotes the anti-cancer effect on malignant melanoma cells. Cancers 11(5):671

    Article  CAS  Google Scholar 

  28. Azzariti A, Iacobazzi RM, Di Fonte R, Porcelli L, Gristina R, Favia P, Fracassi F, Trizio I, Silvestris N, Guida G, Tommasi S, Sardella E (2019) Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells. Sci Rep 9(1):4099

    Article  Google Scholar 

  29. Schmidt A, Bekeschus S, Jarick K, Hasse S, von Woedtke T, Wende K (2019) Cold physical plasma modulates p53 and mitogen-activated protein kinase signaling in keratinocytes. Oxid Med Cell Longev 2019:7017363

    Article  Google Scholar 

  30. Graves DB (2014) Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Processes Polym 11(12):1120–1127

    Article  CAS  Google Scholar 

  31. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  Google Scholar 

  32. He W, Hu S, Du X, Wen Q, Zhong X-P, Zhou X, Zhou C, Xiong W, Gao Y, Zhang S, Wang R, Yang J, Ma L (2018) Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with mycobacterium tuberculosis. Frontiers Immunol 9:365

    Article  Google Scholar 

  33. Privat-Maldonado A, Bengtson C, Razzokov J, Smits E, Bogaerts A (2019) Modifying the tumour microenvironment: challenges and future perspectives for anticancer plasma treatments. Cancers 11:1920

    Article  CAS  Google Scholar 

  34. Miller V, Lin A, Fridman A (2016) Why target immune cells for plasma treatment of cancer. Plasma Chem Plasma Process 36(1):259–268

    Article  CAS  Google Scholar 

  35. Kaushik NK, Kaushik N, Min B, Choi KH, Hong YJ, Miller V, Fridman A, Choi EH (2016) Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation. J Phys D Appl Phys 49(8):084001

    Article  Google Scholar 

  36. Kaushik NK, Kaushik N, Adhikari M, Ghimire B, Linh NN, Mishra YK, Lee SJ, Choi EH (2019) preventing the solid cancer progression via release of anticancer-cytokines in co-culture with cold plasma-stimulated macrophages. Cancers 11(6):842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51521065 and 51837008), China Postdoctoral Science Foundation (2017M610639) and Special Fund of China Postdoctoral Science Foundation, the Fundamental Research Funds for Central Universities, State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19309) and Special Fund of Shaanxi Postdoctoral Science Foundation (2017BSHTDZZ04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dehui Xu or Michael G. Kong.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Xu, D., Li, B. et al. Metabolome Analysis of Selective Inactivation of Human Melanoma and Normal Cells by Cold Atmospheric Plasma. Plasma Chem Plasma Process 41, 591–605 (2021). https://doi.org/10.1007/s11090-020-10147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10147-2

Keywords

Navigation