Skip to main content
Log in

Influence of ion site occupancies on the unit cell parameters, specific volumes, and densities of M8(AlSiO4)6X2 sodalites where M = Li, Na, K, Rb, and Ag and X = Cl, Br, and I

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

This paper discusses the effects of composition on the unit cell parameter (a), unit cell volume (V), specific volume (v), and density (ρ) of various sodalites including \({M}_{8}^{+}{\left({\mathrm{AlSiO}}_{4}\right)}_{6}{\mathrm{Cl}}_{2}\) (M = Li, Na, K, Rb, and/or Ag) and \({\mathrm{Na}}_{8}{\left({\mathrm{AlSiO}}_{4}\right)}_{6}{X}_{2}^{-}\) (X = Cl, Br, and/or I). Compositional models were developed, and the results show that the models are successful at predicting a, V, and v (and thus ρ) within the compositional range available in the literature. Discussion is included on the correlation between the ionic radii of the alkali metals and halides in the sodalite β-cages and the measured values of a, V, v, and ρ. The data show linear increases in a and ρ with increases in the average ionic radii of the \({M}^{+}\) and \({X}^{-}\) constituents (data for v show a linear decrease).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from a previous figure by Riley et al. (2016b) and reprinted with permission. ©2016 Elsevier

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46(6):1501–1509

    Article  Google Scholar 

  • Barrer RM, Vaugiian DEW (1971) Trapping of inert gases in sodalite and cancrinite crystals. J Phys Chem Solids 32(3):731–743

    Article  Google Scholar 

  • Barth TFW (1932) The structures of the minerals of the sodalite family. Z Kristallogr Kristallgeom Kristallphys Kristallchem. 83:405–414

    Google Scholar 

  • Bateman KJ, Knight CJ, Solbrig CW (2007) Current status of ceramic waste form development. INL/INT-06–11736, Rev. 1, Idaho National Laboratory, Idaho Falls, ID

  • Beagley B, Henderson CMB, Taylor D (1982) The crystal structures of aluminoslicate-sodalites: X-ray diffraction studies and computer modelling. Mineral Mag 46:459–464

    Article  Google Scholar 

  • Boocock SK (2009) Non-chromate corrosion inhibitor formulas based on permanganate sodalite compositions.USA Patent No. US 2009/0075113 A1

  • Borhade AV, Wakchaure SG, Dholi AG (2010) One pot synthesis and crystal structure of aluminosilicate mixed chloro-iodo sodalite. Indian J Phys 84(2):133–141

    Article  Google Scholar 

  • Chong S, Riley BJ, Asmussen RM, Lawter AR, Bruffey SH, Nam J, McCloy JS, Crum JV (2020) Iodosodalite synthesis with hot isostatic pressing: a comparison between aqueous and hydrothermal synthesis processes. J Nucl Mater 538:152222

    Article  Google Scholar 

  • Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry: a comprehensive text, 4th edn. Wiley Interscience, New York, NY

    Google Scholar 

  • Frank S, Barber T, Lambregts M (2005) Powder diffraction of sodalite in a multiphase ceramic used to immobilize radioactive waste. Powder Diffr 20(3):212–214

    Article  Google Scholar 

  • Hassan I, Grundy HD (1984) The crystal structures of sodalite-group minerals. Acta Crystallogr B 40(1):6–13

    Article  Google Scholar 

  • Hassan I, Antao SM, Parise JB (2004) Sodalite: high-temperature structures obtained from synchrotron radiation and Rietveld refinements. Am Miner 89:359–364

    Article  Google Scholar 

  • Henderson CMB, Taylor D (1977) Infrared spectra of anhydrous members of the sodalite family. Spectrochim Acta 33A:283–290

    Article  Google Scholar 

  • Henderson CMB, Taylor D (1978) The thermal expansion of synthetic aluminosilicate-sodalites, M8(Al6Si6O24)X2. Phys Chem Mater 2:337–347

    Google Scholar 

  • Jansen CJ, Kapteijn F, Khajavi S (2011) Process for the production of ultra pure water using a membrane. Netherlands Application No. EP2192090 A1

  • Koyama T (1994) Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste. United States Patent No. 5340506.

  • Kroll JO, Riley BJ, McCloy JS, Peterson JA (2020) Sol-gel synthesis of iodosodalite and subsequent consolidation with a glass binder made from oxides and sol-gel routes. J Sol-Gel Sci Technol 96:564–575

    Article  Google Scholar 

  • Lacks DJ, Gordon RG (1993) Crystal-structure calculations with distorted ions. Phys Rev B 48(5):2889–2908

    Article  Google Scholar 

  • Lepry WC, Riley BJ, Crum JV, Rodriguez CP, Pierce DA (2013) Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts. J Nucl Mater 442(1–3):350–359

    Article  Google Scholar 

  • Löns J, Schulz H (1967) Strukturverfeinerung von Sodalith, Na8Si6Al6O24Cl2. Acta Crystallogr A 23(3):434–436

    Article  Google Scholar 

  • Marsh A, Heath A, Patureau P, Evernden M, Walker P (2018) A mild conditions synthesis route to produce hydrosodalite from kaolinite, compatible with extrusion processing. Microporous Mesoporous Mater 264:125–132

    Article  Google Scholar 

  • Murshed MM, Gesing TM (2007) Isomorphous gallium substitution in the alumosilicate sodalite framework: synthesis and structural studies of chloride and bromide containing phases. Zeitschrift fuer Kristallographie 222(7):341–349

    Google Scholar 

  • Nielsen NC, Bildsøe H, Jakobsen HJ, Norby P (1991) 7Li, 23Na, and 27Al quadrupolar interactions in some aluminosilicate sodalites from MAS NMR spectra of satellite transitions. Zeolites 11(6):622–632

    Article  Google Scholar 

  • Oliveira Siqueira G, Goncalves Gravina E, Lamounier Camargos Resende JA, Goncalves Fernandes N (2009) XRD diffraction data and Rietveld refinement of Na8(Si6Al6O24)Cl2. Powder Diffr 24(1):41–43

    Article  Google Scholar 

  • Pauling L (1930) The structure of sodalite and helvite. Z Kristallogr Kristallgeom Kristallphys Kristallchem 74:213–225

    Google Scholar 

  • Peterson RC (1983) The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec. Can Mineral 21(3):549–552

    Google Scholar 

  • Riley BJ, Pierce DA, Frank SM, Matyáš J, Burns CA (2015) Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt used in the reprocessing of used uranium oxide fuel. J Nucl Mater 459:313–322

    Article  Google Scholar 

  • Riley BJ, Lepry WC, Crum JV (2016) Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt. J Nucl Mater 468:140–146

    Article  Google Scholar 

  • Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden JL Jr (2016) Materials and processes for the effective capture and immobilization of radioiodine: a review. J Nucl Mater 470:307–326

    Article  Google Scholar 

  • Riley BJ, Vienna JD, Frank SM, Kroll JO, Peterson JA, Canfield NL, Zhu Z, Zhang J, Kruska K, Schreiber DK, Crum JV (2017) Glass binder development for a glass-bonded sodalite ceramic waste form. J Nucl Mater 489:42–63

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A A32(5):751–767

    Article  Google Scholar 

  • Stein A, Ozin GA, Macdonald PM, Stucky GD, Jelinek R (1992) Silver, sodium halosodalites: class A sodalites. J Am Chem Soc 114(13):5171–5186

    Article  Google Scholar 

  • Sugdon MC, Weller MT (2005) Security material. United Kingdom Application No. EP1681335 A2

  • Tamazyan RA, Malinovskii YA, Il’inets AM (1988) Atomic structure and microtwinning of sodalite. Sov Phys Crystallogr 33(3):325–329

    Google Scholar 

  • Taylor D, Henderson CMB (1978) A computer model for the cubic sodalite structure. Phys Chem Minerals 2:325–336

    Article  Google Scholar 

  • Vance ER, Davis J, Olufson K, Chironi I, Karatchevtseva I, Farnan I (2012) Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel. J Nucl Mater 420(1–3):396–404

    Article  Google Scholar 

  • Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik 5(1):17–26

    Article  Google Scholar 

  • Wartchow R (1997) Redetermination of the crystal structure of hexaaluminium hexasilicon octasodium dichloride tetracosaoxide (sodalite) Na8(Al6Si6O24)Cl2. Zeitschrift fuer Kristallographie—New Crystal Structures 212(2):80

    Article  Google Scholar 

  • Weller MT, Wong G (1989a) Characterisation of novel sodalites by neutron diffraction and solid-state NMR. Solid State Ion 32–33(1):430–435

    Article  Google Scholar 

  • Weller MT, Wong G (1989b) Mixed halide sodalites. Eur J Solid State Inorg Chem 26(6):619–633

    Google Scholar 

  • Zahoransky T, Friis H, Marks MAW (2016) Luminescence and tenebrescence of natural sodalites: a chemical and structural study. Phys Chem Miner 43(7):459–480

    Article  Google Scholar 

Download references

Acknowledgements

Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830. This work was supported by the DOE Office of Nuclear Energy (DOE-NE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Riley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 691 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riley, B.J., Peterson, J.A., Chong, S. et al. Influence of ion site occupancies on the unit cell parameters, specific volumes, and densities of M8(AlSiO4)6X2 sodalites where M = Li, Na, K, Rb, and Ag and X = Cl, Br, and I. Phys Chem Minerals 48, 3 (2021). https://doi.org/10.1007/s00269-020-01124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01124-4

Keywords

Navigation