Skip to main content
Log in

Geometrical quasi-ballistic effects on thermal transport in nanostructured devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We employ thermoreflectance thermal imaging to directly measure the steady-state two-dimensional (2D) temperature field generated by nanostructured heat sources deposited on silicon substrate with different geometrical configurations and characteristic sizes down to 400nm. The analysis of the results using Fourier’s law not only breaks down as size scales down, but it also fails to capture the impact of the geometry of the heat source. The substrate effective Fourier thermal conductivities fitted to wire-shaped and circular-shaped structures with identical characteristic lengths are found to display up to 40% mismatch. Remarkably, a hydrodynamic heat transport model reproduces the observed temperature fields for all device sizes and shapes using just intrinsic Si parameters, i.e., a geometry and size-independent thermal conductivity and nonlocal length scale. The hydrodynamic model provides insight into the observed thermal response and of the contradictory Fourier predictions. We discuss the substantial Silicon hydrodynamic behavior at room temperature and contrast it to InGaAs, which shows less hydrodynamic effects due to dominant phonon-impurity scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hua, C. Y.; Lindsay, L.; Chen, X. W.; Minnich, A. J. Generalized Fourier’s law for nondiffusive thermal transport: Theory and experiment. Phys. Rev. B 2019, 100, 085203.

    Article  CAS  Google Scholar 

  2. Siemens, M. E.; Li, Q.; Yang, R. G.; Nelson, K. A.; Anderson, E. H., Murnane, M. M.; Kapteyn, H. C. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 2010, 9, 26–30.

    Article  CAS  Google Scholar 

  3. Beardo, A.; Hennessy, M. G.; Sendra, L.; Camacho, J.; Myers, T. G.; Bafaluy, J.; Alvarez, F. X. Phonon hydrodynamics in frequency-domain thermoreflectance experiments. Phys. Rev. B 2020, 101, 075303.

    Article  CAS  Google Scholar 

  4. Maznev, A. A.; Johnson, J. A.; Nelson, K. A. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 2011, 84, 195206.

    Article  Google Scholar 

  5. Maire, J.; Anufriev, R.; Nomura, M. Ballistic thermal transport in silicon nanowires. Sci. Rep. 2017, 7, 41794.

    CAS  Google Scholar 

  6. Tsutsui, M.; Chen, Y. C. Heat dissipation in quasi-ballistic singleatom contacts at room temperature. Sci. Rep. 2019, 9, 18677.

    Article  CAS  Google Scholar 

  7. Anufriev, R.; Gluchko, S.; Volz, S.; Nomura, M. Probing ballistic thermal conduction in segmented silicon nanowires. Nanoscale 2019, 11, 13407–13414.

    Article  CAS  Google Scholar 

  8. Johnson, J. A.; Maznev, A. A.; Cuffe, J.; Eliason, J. K.; Minnich, A. J.; Kehoe, T.; Torres, C. M.; Chen, G.; Nelson, K. A. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 2013, 110, 025901.

    Article  Google Scholar 

  9. Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transfer 1996, 118, 539–545.

    Article  CAS  Google Scholar 

  10. Sverdrup, P. G.; Sinha, S.; Asheghi, M.; Uma, S.; Goodson, K. E. Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 2001, 78, 3331–3333.

    Article  CAS  Google Scholar 

  11. Hoogeboom-Pot, K. M.; Hernandez-Charpak, J. N.; Gu, X. K.; Frazer, T. D.; Anderson, E. H.; Chao, W. L.; Falcone, R. W.; Yang, R. G.; Murnane, M. M.; Kapteyn, H. C. et al. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Proc. Natl. Acad. Sci. USA 2015, 112, 4846–4851.

    Article  CAS  Google Scholar 

  12. Hu, Y. J.; Zeng, L. P.; Minnich, A. J.; Dresselhaus, M. S.; Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 2015, 10, 701–706.

    CAS  Google Scholar 

  13. Wilson, R. B.; Cahill, D. G. Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 2014, 5, 5075.

    Article  CAS  Google Scholar 

  14. Ziabari, A.; Torres, P.; Vermeersch, B.; Xuan, Y.; Cartoixà, X.; Torelló, A.; Bahk, J. H.; Koh, Y. R.; Parsa, M.; Ye, P. D. et al. Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 2018, 9, 255.

    Google Scholar 

  15. Markoff, J. Technology: Intel’s Big Shift After Hitting Technical Wall [Online]. https://www.nytimes.com/2004/05/17/business/technology-intels-big-shift-after-hitting-technical-wall.html (accessed July 1, 2020).

  16. Waldrop, M. M. The chips are down for Moore’s law. Nature 2016, 530, 144–147.

    Article  CAS  Google Scholar 

  17. Vermeersch, B.; Carrete, J.; Mingo, N.; Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys. Rev. B 2015, 97, 085202.

    Article  Google Scholar 

  18. Vermeersch, B.; Mohammed, A. M. S.; Pernot, G.; Koh, Y. R.; Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis. Phys. Rev. B 2015, 91, 085203.

    Article  Google Scholar 

  19. Ziabari, A.; Parsa, M.; Xuan, Y.; Bahk, J. H.; Yazawa, K.; Alvarez, F. X.; Shakouri, A. Far-field thermal imaging below diffraction limit. Opt. Express 2020, 28, 7036–7050.

    Article  Google Scholar 

  20. Broido, D. A.; Malorny, M.; Birner, G.; Mingo, N.; Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 2007, 91, 231922.

    Article  Google Scholar 

  21. Chaput, L. Direct Solution to the linearized phonon Boltzmann equation. Phys. Rev. Lett. 2013, 110, 265506.

    Article  Google Scholar 

  22. Simoncelli, M.; Marzari, N.; Cepellotti, A. Generalization of Fourier’s law into viscous heat equations. Phys. Rev. X 2020, 10, 011019.

    CAS  Google Scholar 

  23. De Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 2014, 115, 164314.

    Article  Google Scholar 

  24. Cepellotti, A.; Marzari, N. Thermal transport in crystals as a kinetic theory of relaxons. Phys. Rev. X 2016, 6, 041013.

    Google Scholar 

  25. Hua, C. H.; Lindsay, L.; Chen, X. W.; Minnich, A. J. Generalized Fourier’s law for non-diffusive thermal transport: Theory and experiment. Phys. Rev. B 2019, 100, 085203.

    Article  CAS  Google Scholar 

  26. Beardo, A.; Calvo-Schwarzwälder, M.; Camacho, J.; Myers, T. G.; Torres, P.; Sendra, L.; Alvarez, F. X.; Bafaluy, J. Hydrodynamic heat transport in compact and holey silicon thin films. Phys. Rev. Appl. 2019, 11, 034003.

    Article  CAS  Google Scholar 

  27. Torres, P.; Ziabari, A.; Torelló, A.; Bafaluy, J.; Camacho, J.; Cartoixà, X.; Shakouri, A.; Alvarez, F. X. Emergence of hydrodynamic heat transport in semiconductors at the nanoscale. Phys. Rev. Mater. 2018, 2, 076001.

    Article  CAS  Google Scholar 

  28. Guyer, R. A.; Krumhansl, J. A. Solution of the linearized phonon Boltzmann equation. Phys. Rev. 1966, 148, 766–778.

    Article  CAS  Google Scholar 

  29. Guo, Y. Y.; Wang, M. R. Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures. Phys. Rev. B 2018, 97, 035421.

    Article  CAS  Google Scholar 

  30. Ding, Z. W.; Zhou, J. W.; Song, B.; Chiloyan, V.; Li, M. D.; Liu, T. H.; Chen, G. Phonon hydrodynamic heat conduction and Knudsen minimum in graphite. Nano Lett. 2018, 18, 638–649.

    Article  CAS  Google Scholar 

  31. Machida, Y.; Subedi, A.; Akiba, K.; Miyake, A.; Tokunaga, M.; Akahama, Y.; Izawa, K.; Behnia, K. Observation of Poiseuille flow of phonons in black phosphorus. Sci. Adv. 2018, 4, eaat3374.

    Article  Google Scholar 

  32. Lee, S.; Broido, D.; Esfarjani, K.; Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 2015, 6, 6290.

    CAS  Google Scholar 

  33. Li, X.; Lee, S. Role of hydrodynamic viscosity on phonon transport in suspended graphene. Phys. Rev. B 2018, 97, 094309.

    Article  CAS  Google Scholar 

  34. Scuracchio, P.; Michel, K. H.; Peeters, F. M. Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals. Phys. Rev. B 2019, 99, 144303.

    Article  CAS  Google Scholar 

  35. Ziabari, A.; Bahk, J. H.; Xuan, Y.; Ye, P. D.; Kendig, D.; Yazawa, K.; Burke, P. G.; Lu, H.; Gossard, A. C.; Shakouri, A. Sub-diffraction limit thermal imaging for HEMT devices. Proceedings of the 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 2015, pp 82–87.

  36. Torres, P.; Torelló, A.; Bafaluy, J.; Camacho, J.; Cartoixà, X.; Alvarez, F. X. First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B 2017, 95, 165407.

    Article  Google Scholar 

  37. Farzaneh, M.; Maize, K.; D. Lüerßen; Summers, J. A.; Mayer, P. M.; Raad, P. E.; Pipe, K. P.; Shakouri, A.; Ram, R. J.; Hudgings, J. A. CCD-based thermoreflectance microscopy: Principles and applications. J. Phys. D: Appl. Phys. 2009, 42, 143001.

    Article  Google Scholar 

  38. Favaloro, T.; Bahk, J. H.; A. Shakouri. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum. 2015, 86, 024903.

    Article  CAS  Google Scholar 

  39. Shakouri, A.; Ziabari, A.; Kendig, D.; Bahk, J. H.; Xuan, Y.; Ye, P. D.; Yazawa, K.; A. Shakouri. Stable thermoreflectance thermal imaging microscopy with piezoelectric position control. Proceedings of the 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 2016, pp 128–132.

  40. Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D: Appl. Phys. 1978, 11, 689–694.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. B., L. S., J. B., F. X. A., and J. C. acknowledge financial support by the Spanish Ministerio de Ciencia, Innovación y Universidades under Grant No. RTI2018-097876-B-C22 (MCIU/AEI/FEDER, UE). We thank Aitor Lopeandia for participating in the discussions on the design of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sami Alajlouni or Albert Beardo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alajlouni, S., Beardo, A., Sendra, L. et al. Geometrical quasi-ballistic effects on thermal transport in nanostructured devices. Nano Res. 14, 945–952 (2021). https://doi.org/10.1007/s12274-020-3129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3129-6

Keywords

Navigation