Skip to main content
Log in

pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although gold nanorods (GNRs) have been produced with different dimensions and aspect ratios, the current synthesis methods through seed-mediated growth are far from ideal, for instance, the quality (rod yield) and the quantity (gold conversion) cannot be simultaneously satisfied. More critically, there is no molecular level understanding of the growth mechanism. Here, we solved the problem by employing the stoichiometric ratio of reactants and tuning the reactivity of the reductant through adjusting the initial pH value of the growth solution to achieve both good quality and high quantity simultaneously. We also extended our strategy to other enols besides ascorbic acid, such as phenolic compounds, and found that the optimal pH for GNRs synthesis depends on the structure of the individual compound. The mechanistic insight greatly enriches the toolbox of reductants for GNRs growth and makes it possible to synthesize GNRs at both acidic and basic conditions. An interesting phenomenon is that for most of the phenolic compounds we tested, the morphology of the final products follows the same sphere-rod-sphere trend as the initial pH value of the reaction increases, whether it is under acidic or basic conditions, which cannot be explained by any previously proposed mechanism. The effect of pH is mainly attributed to the regulation of the reduction potential of the reductants, and thus the reaction rate. A model has been proposed to explain the dependence of anisotropic growth of GNRs on the concentration gradient of reactants around the seeds, which is decided by both the reaction rate and diffusion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Palafox, M. A. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

    Article  CAS  Google Scholar 

  2. Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

    Article  CAS  Google Scholar 

  3. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Article  CAS  Google Scholar 

  4. Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841.

    Article  CAS  Google Scholar 

  5. Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

    Article  CAS  Google Scholar 

  6. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

    Article  CAS  Google Scholar 

  7. Zeng, J. B.; Zhang, Y.; Zeng, T.; Aleisa, R.; Qiu, Z. W.; Chen, Y. Z.; Huang, J. K.; Wang, D. W.; Yan, Z. F.; Yin, Y. D. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855.

    Article  CAS  Google Scholar 

  8. Martín-Sánchez, C.; González-Rubio, G.; Mulvaney, P.; Guerrero-Martínez, A.; Liz-Marzán, L. M.; Rodríguez, F. Monodisperse gold nanorods for high-pressure refractive index sensing. J. Phys. Chem. Lett. 2019, 10, 1587–1593.

    Article  CAS  Google Scholar 

  9. Hanske, C.; Hill, E. H.; Vila-Liarte, D.; González-Rubio, G; Matricardi, C.; Mihi, A.; Liz-Marzán, L. M. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures. ACS Appl. Mater. Interfaces 2019, 11, 11763–11771.

    Article  CAS  Google Scholar 

  10. de Aberasturi, D. J.; Serrano-Montes, A. B.; Liz-Marzán, L. M. Modern applications of plasmonic nanoparticles: From energy to health. Adv. Opt. Mater. 2015, 3, 602–617.

    Article  CAS  Google Scholar 

  11. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  CAS  Google Scholar 

  12. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.

    Article  CAS  Google Scholar 

  13. Webb, J. A.; Bardhan, R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014, 6, 2502–2530.

    Article  CAS  Google Scholar 

  14. Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

    Article  CAS  Google Scholar 

  15. Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L. M. A “Tips and Tricks” practical guide to the synthesis of gold nanorods. J. Phys. Chem. Lett. 2015, 6, 4270–4279.

    Article  CAS  Google Scholar 

  16. Pan, S. L.; Chen, M.; Li, H. L. Aqueous gold sols of rod-shaped particles prepared by the template method. Colloid. Surf. A-Physicochem. Eng. Asp. 2001, 180, 55–62.

    Article  CAS  Google Scholar 

  17. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B 1997, 101, 6661–6664.

    Article  CAS  Google Scholar 

  18. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.

    Article  CAS  Google Scholar 

  19. Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416.

    Article  CAS  Google Scholar 

  20. Ye, W. X.; Krüger, K.; Sánchez-Iglesias, A.; García, I.; Jia, X. Y.; Sutter, J.; Celiksoy, S.; Foerster, B.; Liz-Marzán, L. M.; Ahijado-Guzmán, R. et al. CTAB stabilizes silver on gold nanorods. Chem. Mater. 2020, 32, 1650–1656.

    Article  CAS  Google Scholar 

  21. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  CAS  Google Scholar 

  22. Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

    Article  CAS  Google Scholar 

  23. González-Rubio, G.; Kumar, V.; Llombart, P.; Díaz-Núñez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Peña-Rodríguez, O.; Noya, E. G.; MacDowell, L. G. et al. Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods. ACS Nano 2019, 13, 4424–4435.

    Article  CAS  Google Scholar 

  24. Requejo, K. I.; Liopo, A. V.; Zubarev, E. R. Gold nanorod synthesis with small thiolated molecules. Langmuir 2020, 36, 3758–3769.

    Article  CAS  Google Scholar 

  25. Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

    Article  CAS  Google Scholar 

  26. Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1,200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

    Article  CAS  Google Scholar 

  27. Scarabelli, L.; Grzelczak, M.; Liz-Marzán, L. M. Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem. Mater. 2013, 25, 4232–4238.

    Article  CAS  Google Scholar 

  28. Jackson, S. R.; McBride, J. R.; Rosenthal, S. J.; Wright, D. W. Where’s the silver? Imaging trace silver coverage on the surface of gold nanorods. J. Am. Chem. Soc. 2014, 136, 5261–5263.

    Article  CAS  Google Scholar 

  29. Gole, A.; Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16, 3633–3640.

    Article  CAS  Google Scholar 

  30. Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzán, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34–43.

    Article  CAS  Google Scholar 

  31. Wei, Q. S.; Ji, J.; Shen, J. C. pH controlled synthesis of high aspect-ratio gold nanorods. J. Nanosci. Nanotechnol. 2008, 8, 5708–5714.

    Article  CAS  Google Scholar 

  32. Chang, H. H.; Murphy, C. J. Mini gold nanorods with tunable plasmonic peaks beyond 1,000 nm. Chem. Mater. 2018, 30, 1427–1435.

    Article  CAS  Google Scholar 

  33. Metch, J. W.; Burrows, N. D.; Murphy, C. J.; Pruden, A.; Vikesland, P. J. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nat. Nanotechnol. 2018, 13, 253–259.

    Article  CAS  Google Scholar 

  34. Hinman, J. G.; Eller, J. R.; Lin, W.; Li, J.; Li, J. H.; Murphy, C. J. Oxidation state of capping agent affects spatial reactivity on gold nanorods. J. Am. Chem. Soc. 2017, 139, 9851–9854.

    Article  CAS  Google Scholar 

  35. Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martin, V. F.; Solis, D. M.; Bals, S.; Cortajarena, A. L.; Castilla, J.; Liz-Marzán, L. M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225–3230.

    Article  CAS  Google Scholar 

  36. Espinosa, A.; Kolosnjaj-Tabi, J.; Abou-Hassan, A.; Sangnier, A. P.; Curcio, A.; Silva, A. K. A.; Di Corato, R.; Neveu, S.; Pellegrino, T.; Liz-Marzán, L. M. et al. Magnetic (hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv. Funct. Mater. 2018, 28, 1803660.

    Article  CAS  Google Scholar 

  37. Tu, Y. J.; Njus, D.; Schlegel, H. B. A theoretical study of ascorbic acid oxidation and HOO·/O2·- radical scavenging. Org. Biomol. Chem. 2017, 15, 4417–4431.

    Article  CAS  Google Scholar 

  38. Zhang, X.; Gallagher, R.; He, D.; Chen, G. pH regulated synthesis of monodisperse penta-twinned gold nanoparticles with high yield. Chem. Mater. 2020, 32, 5626–5633.

    Article  CAS  Google Scholar 

  39. Cheng, J.; Ge, L.; Xiong, B.; He, Y. Investigation of pH effect on gold nanorod synthesis. J. Chin. Chem. Soc. 2011, 58, 822–827.

    Article  CAS  Google Scholar 

  40. Xu, D.; Mao, J. C.; He, Y.; Yeung, E. S. Size-tunable synthesis of high-quality gold nanorods under basic conditions by using H2O2 as the reducing agent. J. Mater. Chem. C 2014, 2, 4989–4996.

    Article  CAS  Google Scholar 

  41. Wu, H. Y.; Huang, W. L.; Huang, M. H. Direct high-yield synthesis of high aspect ratio gold nanorods. Cryst. Growth Des. 2007, 7, 831–835.

    Article  CAS  Google Scholar 

  42. Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge, J.; Funston, A. M. A mechanism for symmetry breaking and shape control in single-crystal gold nanorods. Acc. Chem. Res. 2017, 50, 2925–2935.

    Article  CAS  Google Scholar 

  43. Cheng, Z. Y.; Ren, J.; Li, Y. Z.; Chang, W. B.; Chen, Z. D. Phenolic antioxidants: Electrochemical behavior and the mechanistic elements underlying their anodic oxidation reaction. Redox Rep. 2002, 7, 395–402.

    Article  CAS  Google Scholar 

  44. Cheng, Z. Y.; Li, Y. Z. Reducing power: The measure of antioxidant activities of reductant compounds? Redox Rep. 2004, 9, 213–217.

    Article  CAS  Google Scholar 

  45. Steenken, S.; Neta, P. One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest. J. Phys. Chem. 1982, 86, 3661–3667.

    Article  CAS  Google Scholar 

  46. Si, S.; Leduc, C.; Delville, M. H.; Lounis, B. Short gold nanorod growth revisited: The critical role of the bromide counterion. ChemPhysChem 2012, 13, 193–202.

    Article  CAS  Google Scholar 

  47. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

    Article  CAS  Google Scholar 

  48. Carbó-Argibay, E.; Rodríguez-González, B.; Gómez-Graña, S.; Guerrero-Martínez, A.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. The crystalline structure of gold nanorods revisited: Evidence for higher-index lateral facets. Angew. Chem., Int. Ed. 2010, 122, 9587–9590.

    Article  Google Scholar 

  49. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966–978.

    Article  CAS  Google Scholar 

  50. Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

    Article  CAS  Google Scholar 

  51. Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

    Article  CAS  Google Scholar 

  52. Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Start-up Fund from the University of Central Florida to G. C. and M. B. G. C. also thank the VPR Advancement of Early Career Researchers (AECR) Award support from the University of Central Florida. X. Z. gratefully acknowledges the Preeminent Postdoctoral Program (P3) award from UCF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melanie Beazley or Gang Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, R., Zhang, X., Altomare, A. et al. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Res. 14, 1167–1174 (2021). https://doi.org/10.1007/s12274-020-3167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3167-0

Keywords

Navigation