Skip to main content
Log in

Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials. Conventional strategies are focused on the development of the composition and structure of the hydrogel's internal network. In our point of view, the importance of the surface structure of hydrogel has usually been underestimated or ignored. Here inspired by the excellent absorbance and water transportation ability of biological surface structure, the hierarchical structured hydrogel evaporators (HSEs) increased the light absorption, trapping, water transportation and water-air interface, which is the beneficial photothermal conversion and water evaporation. The HSEs showed a rapid evaporation rate of 1.77 kg·m-2·h-1 at about 92% energy efficiency under one sun (1 kW·m-2). Furthermore, the superhydrophilic window device was used in this work to collect the condensed water, which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water. Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment, this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S.; Research opportunities to advance solar energy utilization. Science, 2016, 351, aad1920.

    Article  CAS  Google Scholar 

  2. Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y., Wang, X. W.; Wang, D. Z.; Muto, A. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

    Article  CAS  Google Scholar 

  3. Tao, P.; Ni, G.; Song C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy, 2018, 3, 1031–1041.

    Article  Google Scholar 

  4. Chen, C. J.; Kuang, Y. D.; Hu, L. B.; Challenges and opportunities for solar evaporation. Joule, 2019, 3, 683–718.

    Article  CAS  Google Scholar 

  5. Zhou, L.; Li, X. Q.; Ni, G. W.;; Zhu, S. N.; Zhu, J. The revival of thermal utilization from the Sun: Interfacial solar vapor generation. Natl. Sci. Rev. 2019, 6, 562–578.

    Article  CAS  Google Scholar 

  6. Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W.; Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

    Article  CAS  Google Scholar 

  7. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  8. Wu, S. H.; Xiong, G. P.;; Yang, H. C.; Gong, B. Y.; Tian, Y. K.;; Xu, C. X.; Wang, Y., Fisher, T.; Yan, J. H.; Cen, K. F.; et al. Multifunctional solar waterways: Plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Adv. Energy Mater. 2019, 9, 1901286.

    Article  CAS  Google Scholar 

  9. Liang, J.; Liu, H. Z.; Yu, J. Y.; Zhou, L.; Zhu, J. Plasmon-enhanced solar vapor generation. Nanophotonics, 2019, 8, 771–786.

    Article  Google Scholar 

  10. Liu, H. W.; Chen, C. J.; Wen, H.; Guo, R. X.; Williams, N. A.; Wang, B. D.; Chen, F. J.; Hu, L. B.; Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 2018, 6, 18839–18846.

    Article  CAS  Google Scholar 

  11. Cheng, H. Y.; Liu, X. H.; Zhang, L. X.; Hou, B. F.; Yu, F., Shi, Z. X.; Wang, X. B.; Self-floating Bi2S3/poly (vinylidene fluoride) composites on polyurethane sponges for efficient solar water purification. Solar Energy Mater. Solar Cells 2019, 203, 110127.

    Article  CAS  Google Scholar 

  12. Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y., Wen, Z. H.; Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nana Energy 2017, 41, 600–608.

    Article  CAS  Google Scholar 

  13. Zhu, L. L.; Gao, M. M.; Peh, C. K.; N; Wang, X. Q.; Ho, G. W.; Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 2018, 8, 1702149.

    Article  CAS  Google Scholar 

  14. Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y., Qu, L. T.; Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nana 2017, 11, 5087–5093.

    Article  CAS  Google Scholar 

  15. Fu, Y., Wang, G., Mei, T.; Li, J. H.; Wang, J. Y.; Wang, X. B.; Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustainable Chem. Eng. 2017, 5, 4665–4671.

    Article  CAS  Google Scholar 

  16. Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889–4894.

    Article  CAS  Google Scholar 

  17. Wang, Z.; Yan, Y. T.; Shen, X. P.; Jin, C. D.; Sun, Q. F.; Li, H. Q.; A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. J. Mater. Chem. A 2019, 7, 20706–20712.

    Article  CAS  Google Scholar 

  18. Wang, X.; Liu, Q. C.; Wu, S. Y.; Xu, B. X.; Xu, H. X.; Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 2019, 31, 1807716.

    Article  CAS  Google Scholar 

  19. Xiao, P.; Gu, J. C.; Zhang, C., Liang, F., Ni, Y., He, J.; Zhang, L.; Ouyang, J. Y.; Kuo, S. W.; Chen, T. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction. Nano Energy 2019, 65, 104002.

    Article  CAS  Google Scholar 

  20. Xu, N., Hu, X. Z.; Xu, W. C.; Li, X. C.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

    Article  CAS  Google Scholar 

  21. Wang, C. B.; Wang, J. L.; Li, Z. T.; Xu, K. Y.; Lei, T., Wang, W. K.; Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 2020, 8, 9528–9535.

    Article  CAS  Google Scholar 

  22. Xie, Y. H.; Li, W. J.; Huang, H. W.; Dong, D. X.; Zhang, X. Y.; Zhang, L.; Chen, Y., Lu, X. Bio-based Radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage. ACS Sustainable Chem. Eng. 2020, 8, 8448–8457.

    Article  CAS  Google Scholar 

  23. Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J.; Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579–1584.

    Article  CAS  Google Scholar 

  24. Rong, Q. F.; Lei, W. W.; Liu, M. J.; Conductive hydrogels as smart materials for flexible electronic devices. Chem. -Eur. J. 2018, 24, 16930–16943.

    Article  CAS  Google Scholar 

  25. Yuk, H.; Lu, B. Y.; Zhao, X. H.; Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667.

    Article  CAS  Google Scholar 

  26. Proctor, C. M.; Chan, C. Y.; Porcarelli, L.; Udabe, E.; Sanchez-Sanchez, A.; del Agua, I.; Mecerreyes, D.; Malliaras, G. G. Ionic hydrogel for accelerated dopamine delivery via retrodialysis. Chem. Mater. 2019, 31, 7080–7084.

    Article  CAS  Google Scholar 

  27. Zhao, F., Zhou, X. Y.; Shi, Y., Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H.; Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    Article  CAS  Google Scholar 

  28. Zhou, X. Y.; Zhao, F., Guo, Y. H.; Rosenberger, B.; Yu, G. H.; Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

    Article  CAS  Google Scholar 

  29. Zhao, L. Y.; Wang, P. S.; Tian, J.; Wang, J. H.; Li, L.; Xu, L. Q.; Wang, Y., Fei, X.; Li, Y. A novel composite hydrogel for solar evaporation enhancement at air-water interface. Sci. Total Environ. 2019, 668, 153–160.

    Article  CAS  Google Scholar 

  30. Gao, M. M.; Peh, C. K.; Phan, H. T.; Zhu, L. L.; Ho, G. W.; Solar absorber gel: Localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energy Mater. 2018, 8, 1800711.

    Article  CAS  Google Scholar 

  31. Kim, J. B.; Kim, P.; Pegard, N. C.; Oh, S. J.; Kagan, C. R.; Fleischer, J. W.; Stone, H. A.; Loo, Y. L.; Wrinkles and deep folds as photonic structures in photovoltaics. Nat. Photonics 2012, 6, 327–332.

    Article  CAS  Google Scholar 

  32. Dotan, H., Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G., Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158–164.

    Article  CAS  Google Scholar 

  33. Tadepalli, S.; Slocik, J. M.; Gupta, M. K.; Naik, R. R.;; Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 2017, 777, 12705–12763.

    Article  CAS  Google Scholar 

  34. Tao, P.; Shang, W.; Song, C. Y.; Shen, Q. C.; Zhang, F. Y.; Luo, Z.; Yi, N., Zhang, D.; Deng, T. Bioinspired engineering of thermal materials. Adv. Mater. 2015, 27, 428–463.

    Article  CAS  Google Scholar 

  35. Qian, X. S.; Zhao, Y. S.; Alsaid, Y., Wang, X.; Hua, M. T.; Galy, T., Gopalakrishna, H., Yang, Y. Y.; Cui, J.S.; Liu, N. et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048–1055.

    Article  CAS  Google Scholar 

  36. Chen, H. W.; Zhang, P. F.; Zhang, L. W.; Liu, H. L.; Jiang, Y., Zhang, D. Y.; Han, Z. W.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 2016, 532, 85–89.

    Article  CAS  Google Scholar 

  37. Ishii, D.; Horiguchi, H., Hirai, Y., Yabu, H., Matsuo, Y., Ijiro, K., Tsujii, K., Shimozawa, T., Hariyama, T., Shimomura, M. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces. Sci. Rep. 2013, 3, 3024.

    Article  Google Scholar 

  38. Lei, W. W.; Qi, S. H.; Rong, Q. F.; Huang, J.; Xu, Y. C.; Fang, R. C.; Liu, K. S.; Jiang, L., Liu, M. J.; Diffusion-freezing-induced microphase separation for constructing large-area multiscale structures on hydrogel surfaces. Adv. Mater. 2019, 31, 1808217.

    Article  CAS  Google Scholar 

  39. Mansur, H. S.; Orefice, R. L.; Mansur, A. A. P. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 2004, 45, 7193–7202.

    Article  CAS  Google Scholar 

  40. Gomez, H., Ram, M. K.; Alvi, F., Villalba, P.; Stefanakos, E.; Kumar, A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J. Power Sources 2011, 796, 4102–4108.

    Article  CAS  Google Scholar 

  41. Liu, T. Q.; Jiao, C., Peng, X.; Chen, Y. N.; Chen, Y. Y.; He, C. C.; Liu, R. G.; Wang, H. L.; Super-strong and tough poly(vinyl alcohol)/ poly(acrylic acid) hydrogels reinforced by hydrogen bonding. J. Mater. Chem. B 2018, 6, 8105–8114.

    Article  CAS  Google Scholar 

  42. Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

    Article  CAS  Google Scholar 

  43. Guo, Y. H; Lu, H. Y.; Zhao, F., Zhou, X. Y.; Shi, W.; Yu, G.H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061.

    Article  CAS  Google Scholar 

  44. Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.;; Dai, S.; Mahurin, S. M.; Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464.

    Article  CAS  Google Scholar 

  45. Yang, J.; Zhang, Z. Z.; Xu, X. H.; Zhu, X. T.; Men, X. H.; Zhou, X. Y Superhydrophilic-superoleophobic coatings. J. Mater. Chem. 2012, 22, 2834–2837.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Cunming Yu and Dr. Xiao Xiao for providing COMSLO simulation. This work was supported by the National Natural Science Funds for Distinguished Young Scholar (No. 21725401), the National Key R&D Program of China (No. 2017YFA0207800), the 111 project (B14009), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiaki Terashima, Kesong Liu or Mingjie Liu.

Electronic Supplementary Material

12274_2020_3162_MOESM1_ESM.pdf

Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Khan, S., Chen, L. et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 14, 1135–1140 (2021). https://doi.org/10.1007/s12274-020-3162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3162-5

Keywords

Navigation