Skip to main content
Log in

Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Titania has received considerable attention as a promising anode material of Li-ion battery (LIB). Controlling the structure and morphology of titania nanostructures is crucial to govern their performance. Herein, we report a mesoporous titania scaffold with a bicontinuous shifted double diamond (SDD) structure for anode material of LIB. The titania scaffold was synthesized by the cooperative self-assembly of a block copolymer poly(ethylene oxide)-block-polystyrene template and titanium diisopropoxide bis(acetylacetonate) as the inorganic precursor in a mixture solvent of tetrahydrofuran and HCl/water. The structure shows tetragonal symmetry (space group I41/amd) comprising two sets of diamond networks adjoining each other with the unit cell parameter of a = 90 nm and c = 127 nm, which affords the porous titania a specific surface area (SSA) of 42 m2·g−1 with a mean pore diameter of 38 nm. Serving as an anode material of LIB, the bicontinuous titania scaffold exhibits a high specific capacity of 254 mAh·g−1 at the current density of 1 A·g−1 and an alluring self-improving feature upon charge/discharge over 1,000 cycles. This study overcomes the difficulty in building up ordered bicontinuous functional materials and demonstrates their potential in energy storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, K.; Wei, M.; Morris, M. A.; Zhou, H.; Holmes, J. D. Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Adv. Mater. 2007, 19, 3016–3020.

    CAS  Google Scholar 

  2. Yue, W. B.; Xu, X. X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H. Y.; Zhao, D. Y.; Zhou, W. Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 2009, 21, 2540–2546.

    CAS  Google Scholar 

  3. Jiang, Y. M.; Wang, K. X.; Guo, X. X.; Wei, X.; Wang, J. F.; Chen, J. S. Mesoporous titania rods as an anode material for high performance lithium-ion batteries. J. Power Sources 2012, 214, 298–302.

    CAS  Google Scholar 

  4. Zhu, H. W.; Shang, Y. S.; Jing, Y. K.; Liu, Y.; Liu, Y. P.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Synthesis of monodisperse mesoporous TiO2 nanospheres from a simple double-surfactant assembly-directed method for lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 25586–25594.

    CAS  Google Scholar 

  5. Fischer, M. G.; Hua, X.; Wilts, B. D.; Gunkel, I.; Bennett, T. M.; Steiner, U. Mesoporous titania microspheres with highly tunable pores as an anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 22388–22397.

    CAS  Google Scholar 

  6. Wang, N.; Hou, D.; Li, Q.; Zhang, P. F.; Wei, H.; Mai, Y. Y. Two-dimensional interface engineering of mesoporous polydopamine on graphene for novel organic cathodes. ACS Appl. Energy Mater. 2019, 2, 5816–5823.

    CAS  Google Scholar 

  7. Wang, N.; Tian, H.; Zhu, S. Y.; Yan, D. Y.; Mai, Y. Y. Two-dimensional nitrogen-doped mesoporous carbon/graphene nanocomposites from the self-assembly of block copolymer micelles in solution. Chin. J. Polym. Sci. 2018, 36, 266–272.

    CAS  Google Scholar 

  8. Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736.

    CAS  Google Scholar 

  9. Han, L.; Che, S. A. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv. Mater. 2018, 30, 1705708.

    Google Scholar 

  10. Yang, X.; Tang, Y. B.; Huang, X.; Xue, H. T.; Kang, W. P.; Li, W. Y.; Ng, T. W.; Lee, C. S. Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J. Power Sources 2015, 284, 109–114.

    CAS  Google Scholar 

  11. Wu, Y.; Wei, Z. X.; Xu, R.; Gong, Y.; Gu, L.; Ma, J. M.; Yu, Y. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 2019, 12, 2211–2217.

    CAS  Google Scholar 

  12. Yu, A.; Gong, D. C.; Zhang, M.; Tang, Y. B. In-situ implanted carbon nanofilms into lithium titanate with 3D porous structure as fast kinetics anode for high-performance dual-ion battery. Chem. Eng. J. 2020, 401, 125834.

    CAS  Google Scholar 

  13. Hwang, C. H.; Kim, H. E.; Nam, I.; Bang, J. H. Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Res. 2019, 12, 897–904.

    CAS  Google Scholar 

  14. Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

    CAS  Google Scholar 

  15. Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

    CAS  Google Scholar 

  16. Wang, J. Y.; Huang, W.; Kim, Y. S.; Jeong, Y. K.; Kim, S. C.; Heo, J.; Lee, H. K.; Liu, B. F.; Nah, J.; Cui, Y. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 2020, 13, 1558–1563.

    CAS  Google Scholar 

  17. Jia, R.; Jiang, Y.; Li, R.; Chai, R. Q.; Lou, Z.; Shen, G. Z.; Chen, D. Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. Sci. China Mater. 2020, 63, 1171–1181.

    CAS  Google Scholar 

  18. Chan, C. T.; Datta, S.; Ho, K. M.; Soukoulis, C. M. A7 structure: A family of photonic crystals. Phys. Rev. B 1994, 50, 1988–1991.

    CAS  Google Scholar 

  19. Gao, C. B.; Sakamoto, Y.; Sakamoto, K.; Terasaki, O.; Che, S. A. Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry. Angew. Chem., Int. Ed. 2006, 45, 4295–4298.

    CAS  Google Scholar 

  20. Han, L.; Miyasaka, K.; Terasaki, O.; Che, S. A. Evolution of packing parameters in the structural changes of silica mesoporous crystals: Cage-type, 2D cylindrical, bicontinuous diamond and gyroid, and lamellar. J. Am. Chem. Soc. 2011, 133, 11524–11533.

    CAS  Google Scholar 

  21. Cao, X.; Mao, W. T.; Mai, Y. Y.; Han, L.; Che, S. A. Formation of diverse ordered structures in ABC triblock terpolymer templated macroporous silicas. Macromolecules 2018, 51, 4381–4396.

    CAS  Google Scholar 

  22. Sheng, Q. Q.; Mao, W. T.; Han, L.; Che, S. A. Fabrication of photonic bandgap materials by shifting double frameworks. Chem. Eur. J. 2018, 24, 17389–17396.

    CAS  Google Scholar 

  23. Hyde, S.; Blum, Z.; Landh, T.; Lidin, S.; Ninham, B. W. The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology; Elsevier: Amsterdam, 1996.

    Google Scholar 

  24. Orilall, M. C.; Wiesner, U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem. Soc. Rev. 2011, 40, 520–535.

    CAS  Google Scholar 

  25. Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, 1598–1601.

    CAS  Google Scholar 

  26. Gao, C. B.; Qiu, H. B.; Zeng, W.; Sakamoto, Y.; Terasaki, O.; Sakamoto, K.; Chen, Q.; Che, S. A. Formation mechanism of anionic surfactant-templated mesoporous silica. Chem. Mater. 2006, 18, 3904–3914.

    CAS  Google Scholar 

  27. Hyde, S. T.; Schröder-Turk, G. E. Geometry of interfaces: Topological complexity in biology and materials. Interface Focus 2012, 2, 529–538.

    Google Scholar 

  28. Yu, H. Z.; Qiu, X. Y.; Nunes, S. P.; Peinemann, K. V. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. Nat. Commun. 2014, 5, 4110.

    CAS  Google Scholar 

  29. Stefik, M.; Guldin, S.; Vignolini, S.; Wiesner, U.; Steiner, U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev. 2015, 44, 5076–5091.

    CAS  Google Scholar 

  30. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang, Y.; Liu, C.; Wu, X. J. et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc. 2007, 129, 1690–1697.

    CAS  Google Scholar 

  31. Mai, Y. Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

    CAS  Google Scholar 

  32. Lin, Z. X.; Liu, S. H.; Mao, W. T.; Tian, H.; Wang, N.; Zhang, N. H.; Tian, F.; Han, L.; Feng, X. L.; Mai, Y. Y. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces. Angew. Chem., Int. Ed. 2017, 56, 7135–7140.

    CAS  Google Scholar 

  33. La, Y. J.; Song, J.; Jeong, M. G.; Cho, A.; Jin, S. M.; Lee, E.; Kim, K. T. Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes. Nat. Commun. 2018, 9, 5327.

    CAS  Google Scholar 

  34. Cao, X.; Xu, D. P.; Yao, Y.; Han, L.; Terasaki, O.; Che, S. A. Interconversion of triply periodic constant mean curvature surface structures: From double diamond to single gyroid. Chem. Mater. 2016, 28, 3691–3702.

    CAS  Google Scholar 

  35. Han, L.; Xu, D. P.; Liu, Y.; Ohsuna, T.; Yao, Y.; Jiang, C.; Mai, Y. Y.; Cao, Y. Y.; Duan, Y. Y.; Che, S. A. Synthesis and characterization of macroporous photonic structure that consists of azimuthally shifted double-diamond silica frameworks. Chem. Mater. 2014, 26, 7020–7028.

    CAS  Google Scholar 

  36. Wei, J.; Wang, H.; Deng, Y. H.; Sun, Z. K.; Shi, L.; Tu, B.; Luqman, M.; Zhao, D. Y. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 2011, 133, 20369–20377.

    CAS  Google Scholar 

  37. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U. et al. A bicontinuous double gyroid hybrid solar cell. Nano Lett. 2009, 9, 2807–2812.

    CAS  Google Scholar 

  38. Stefik, M.; Wang, S. T.; Hovden, R.; Sai, H.; Tate, M. W.; Muller, D. A.; Steiner, U.; Gruner, S. M.; Wiesner, U. Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles. J. Mater. Chem. 2012, 22, 1078–1087.

    CAS  Google Scholar 

  39. Li, H.; Liu, Y.; Cao, X.; Han, L.; Jiang, C.; Che, S. A. A shifted double-diamond titania scaffold. Angew. Chem., Int. Ed. 2017, 56, 806–811.

    CAS  Google Scholar 

  40. Mao, W. T.; Cao, X.; Sheng, Q. Q.; Han, L.; Che, S. A. Silica scaffold with shifted “plumber’s nightmare” networks and their interconversion into diamond networks. Angew. Chem., Int. Ed. 2017, 56, 10670–10675.

    CAS  Google Scholar 

  41. Hwang, J.; Jo, C.; Hur, K.; Lim, J.; Kim, S.; Lee, J. Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks. J. Am. Chem. Soc. 2014, 136, 16066–16072.

    CAS  Google Scholar 

  42. Liu, H. S.; Bi, Z. H.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M. Mesoporous TiO2-b microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 2011, 23, 3450–3454.

    CAS  Google Scholar 

  43. Madej, E.; La Mantia, F.; Mei, B.; Klink, S.; Muhler, M.; Schuhmann, W.; Ventosa, E. Reliable benchmark material for anatase TiO2 in Li-ion batteries: On the role of dehydration of commercial TiO2. J. Power Sources 2014, 266, 155–161.

    CAS  Google Scholar 

  44. Stefik, M.; Mahajan, S.; Sai, H.; Epps, T. H.; Bates, F. S.; Gruner, S. M.; Disalvo, F. J.; Wiesner, U. Ordered three- and five-ply nanocomposites from abc block terpolymer microphase separation with niobia and aluminosilicate sols. Chem. Mater. 2009, 21, 5466–5473.

    CAS  Google Scholar 

  45. Wang, J.; Zhou, Y. K.; Hu, Y. Y.; O’Hayre, R.; Shao, Z. P. Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 2529–2536.

    CAS  Google Scholar 

  46. Jeong, J. H.; Jung, D. W.; Shin, E. W.; Oh, E. S. Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J. Alloys Compd. 2014, 604, 226–232.

    CAS  Google Scholar 

  47. Qiu, J. X.; Zhang, P.; Ling, M.; Li, S.; Liu, P. R.; Zhao, H. J.; Zhang, S. Q. Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl. Mater. Interfaces 2012, 4, 3636–3642.

    CAS  Google Scholar 

  48. Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.

    CAS  Google Scholar 

  49. Li, J.; Huang, J. F.; Li, J. Y.; Cao, L. Y.; Qi, H.; Cheng, Y. Y.; Xi, Q.; Dang, H. Improved li-ion diffusion process in TiO2/RGO anode for lithium-ion battery. J. Alloys Compd. 2017, 727, 998–1005.

    CAS  Google Scholar 

  50. Moriguchi, I.; Shono, Y.; Yamada, H.; Kudo, T. Colloidal crystal-derived nanoporous electrode materials of cut swnts-assembly and TiO2/SWNTs nanocomposite. J. Phys. Chem. B 2008, 112, 14560–14565.

    CAS  Google Scholar 

  51. Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

    Google Scholar 

  52. McNulty, D.; Carroll, E.; O’Dwyer, C. Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability, and high structural stability. Adv. Energy Mater. 2017, 7, 1602291.

    Google Scholar 

  53. Jin, J.; Huang, S. Z.; Shu, J.; Wang, H. E.; Li, Y.; Yu, Y.; Chen, L. H.; Wang, B. J.; Su, B. L. Highly porous TiO2 hollow microspheres constructed by radially oriented nanorods chains for high capacity, high rate and long cycle capability lithium battery. Nano Energy 2015, 16, 339–349.

    CAS  Google Scholar 

  54. Xiong, H.; Yildirim, H.; Shevchenko, E. V.; Prakapenka, V. B.; Koo, B.; Slater, M. D.; Balasubramanian, M.; Sankaranarayanan, S. K. R. S.; Greeley, J. P.; Tepavcevic, S. et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C 2012, 116, 3181–3187.

    CAS  Google Scholar 

  55. Zhou, M.; Xu, Y.; Wang, C. L.; Li, Q. W.; Xiang, J. X.; Liang, L. Y.; Wu, M. H.; Zhao, H. P.; Lei, Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy 2017, 31, 514–524.

    CAS  Google Scholar 

  56. Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.

    CAS  Google Scholar 

  57. Kavan, L.; Kalbáć, M.; Zukalová, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M. Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 2004, 16, 477–485.

    CAS  Google Scholar 

  58. Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.

    CAS  Google Scholar 

  59. Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

    Google Scholar 

  60. Lv, W. M.; Xiang, J. Y.; Wen, F. S.; Jia, Z. Y.; Yang, R. L.; Xu, B.; Yu, D. L.; He, J. L.; Liu, Z. Y. Chemical vapor synthesized WS2-embedded polystyrene-derived porous carbon as superior long-term cycling life anode material for li-ion batteries. Electrochim. Acta 2015, 153, 49–54.

    CAS  Google Scholar 

  61. Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Instrumental Analysis Center at Shanghai Jiao Tong University for some analyses. The authors are also grateful for the financial support from the National Natural Science Foundation of China (Nos. 21774076, 21922304, 21873072, and 52073173), the Program of the Shanghai Committee of Science and Technology (No. 17JC1403200), the Program of Shanghai Academic Research Leader (No. 19XD1421700), the Program of Shanghai Eastern Scholar and Natural Science Foundation of Shanghai (No. 18ZR1442400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiyong Mai or Lu Han.

Electronic Supplementary Material

12274_2020_3139_MOESM1_ESM.pdf

Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Q., Li, Q., Xiang, L. et al. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 14, 992–997 (2021). https://doi.org/10.1007/s12274-020-3139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3139-4

Keywords

Navigation