Skip to main content

Advertisement

Log in

Oncological Ligand-Target Binding Systems and Developmental Approaches for Cancer Theranostics

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Targeted treatment of cancer hinges on the identification of specific intracellular molecular receptors on cancer cells to stimulate apoptosis for eventually inhibiting growth; the development of novel ligands to target biomarkers expressed by the cancer cells; and the creation of novel multifunctional carrier systems for targeted delivery of anticancer drugs to specific malignant sites. There are numerous receptors, antigens, and biomarkers that have been discovered as oncological targets (oncotargets) for cancer diagnosis and treatment applications. Oncotargets are critically important to navigate active anticancer drug ingredients to specific disease sites with no/minimal effect on surrounding normal cells. In silico techniques relating to genomics, proteomics, and bioinformatics have catalyzed the discovery of oncotargets for various cancer types. Effective oncotargeting requires high-affinity probes engineered for specific binding of receptors associated with the malignancy. Computational methods such as structural modeling and molecular dynamic (MD) simulations offer opportunities to structurally design novel ligands and optimize binding affinity for specific oncotargets. This article proposes a streamlined approach for the development of ligand-oncotarget bioaffinity systems via integrated structural modeling and MD simulations, making use of proteomics, genomic, and X-ray crystallographic resources, to support targeted diagnosis and treatment of cancers and tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Callari, M., Gandellini, P., Skvortsova, I., & Span, P. N. (2018). Predicting and understanding cancer response to treatment. Disease Markers. https://doi.org/10.1155/2018/6159214.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., et al. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144, 1941–1953.

    CAS  PubMed  Google Scholar 

  3. Hinck, L., & Näthke, I. (2014). Changes in cell and tissue organization in cancer of the breast and colon. Current Opinion in Cell Biology, 26, 87–95.

    CAS  PubMed  Google Scholar 

  4. Cooper, G. (2000). The cell: A molecular approach (2nd ed.). Sinauer Associates: Sunderland.

    Google Scholar 

  5. American Society of Cancer. (2015). Cancer facts and figures 2015. Atlanta: American Society of Cancer.

    Google Scholar 

  6. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  7. Kim, R. (2017). Anesthetic technique and cancer recurrence in oncologic surgery: unraveling the puzzle. Cancer and Metastasis Reviews, 36, 159–177.

    CAS  PubMed  Google Scholar 

  8. Liu, J., Yang, Y., Zhu, W., Yi, X., Dong, Z., Xu, X., et al. (2016). Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 97, 1–9.

    CAS  PubMed  Google Scholar 

  9. Van Driel, W. J., Koole, S. N., Sikorska, K., Schagen van Leeuwen, J. H., Schreuder, H. W. R., Hermans, R. H. M., et al. (2018). Hyperthermic intraperitoneal chemotherapy in ovarian cancer. New England Journal of Medicine, 378, 230–240.

    Google Scholar 

  10. Vertosick, E. A., Assel, M., Tokita, H. K., Zafirova, Z., Vickers, A. J., Simon, B. A., & Twersky, R. (2019). Suitability of outpatient or ambulatory extended recovery cancer surgeries for obese patients. Journal of Clinical Anesthesia, 58, 111–116.

    PubMed  PubMed Central  Google Scholar 

  11. Martin, O. A., Anderson, R. L., Narayan, K., & MacManus, M. P. (2017). Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nature Reviews Clinical Oncology, 14, 32.

    CAS  PubMed  Google Scholar 

  12. Morris, D., Tu, D., Tehfe, M. A., Nicholas, G. A., Goffin, J. R., Gregg, R. W., et al. (2016). A Randomized phase II study of reolysin in patients with previously treated advanced or metatstatic non small cell lung cancer (NSCLC) receiving standard salvage chemotherapy-canadian cancer trials group IND 211. Atlanda: American Society of Clinical Oncology.

    Google Scholar 

  13. Shamsi, M., Sedaghatkish, A., Dejam, M., Saghafian, M., Mohammadi, M., & Sanati-Nezhad, A. (2018). Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Delivery, 25, 846–861.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lorusso, D., Bria, E., Costantini, A., Di Maio, M., Rosti, G., & Mancuso, A. (2017). Patients’ perception of chemotherapy side effects: Expectations, doctor–patient communication and impact on quality of life–An Italian survey. European Journal of Cancer Care, 26, e12618.

    Google Scholar 

  15. Yin, L., Lu, S., Zhu, J., Zhang, W., & Ke, G. (2019). Ovarian transposition before radiotherapy in cervical cancer patients: Functional outcome and the adequate dose constraint. Radiation Oncology, 14, 100.

    PubMed  Google Scholar 

  16. Anghileri, L. J., & Robert, J. (2019). Hyperthermia in cancer treatment. Boca Raton: CRC Press.

    Google Scholar 

  17. He, Z., Liu, P., Zhang, S., Yan, J., Wang, M., Cai, Z., et al. (2019). A freezing-induced turn-on imaging modality for real-time monitoring of cancer cells in cryosurgery. Angewandte Chemie International Edition, 58, 3834–3837.

    CAS  PubMed  Google Scholar 

  18. Qiu, W., Zhang, H., Chen, X., Song, L., Cui, W., Ren, S., et al. (2019). A glypican-1-targeted and gmcitabine-loaded biocompatible nanoplatform for pancreatic cancer near-infrared fluorescence/magnetic resonance multimodal imaging and therapy. Magnetic Resonance Multimodal Imaging and Therapy. https://doi.org/10.2139/ssrn.3328649.

    Article  Google Scholar 

  19. Chang, D., Lim, M., Goos, J. A. C. M., Qiao, R., Ng, Y. Y., Mansfeld, F. M., et al. (2018). Biologically targeted magnetic hyperthermia: Potential and limitations. Frontiers in Pharmacology, 9, 831.

    PubMed  PubMed Central  Google Scholar 

  20. Mucciardi, G., Magno, C., Inferrera, A., & Lugnani, F. (2016). Cryosurgery and irreversible electroporation: The state of the art, advantages, and limitations. Handbook of Electroporation. https://doi.org/10.1007/978-3-319-32886-7_110.

    Article  Google Scholar 

  21. Charmsaz, S., & Boyd, A. W. (2017). Eph receptors as oncotargets. Oncotarget, 8, 81727.

    PubMed  PubMed Central  Google Scholar 

  22. Jiao, Y., Wang, Y., Guo, S., & Wang, G. (2017). Glutathione peroxidases as oncotargets. Oncotarget, 8, 80093.

    PubMed  PubMed Central  Google Scholar 

  23. Chen, X., Zheng, Q., Li, W., Lu, Y., Ni, Y., Ma, L., & Fu, Y. (2018). SOX5 induces lung adenocarcinoma angiogenesis by inducing the expression of VEGF through STAT3 signaling. OncoTargets and Therapy, 11, 5733.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, Y.-H., Lin, T.-T., Wu, Y.-P., Li, X.-D., Chen, S.-H., Xue, X.-Y., et al. (2019). Identification of key genes and pathways in seminoma by bioinformatics analysis. OncoTargets and Therapy, 12, 3683.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, S., Yu, Z.-H., & Chai, K.-Q. (2019). Identification of EGFR as a novel key gene in clear cell renal cell carcinoma (ccRCC) through bioinformatics analysis and meta-analysis. BioMed Research International. https://doi.org/10.1155/2019/6480865.

    Article  PubMed  PubMed Central  Google Scholar 

  26. American Cancer Society. (2019). Cancer facts and figures 2019. Atlanta: American Cancer Society.

    Google Scholar 

  27. Dela Cruz, C. S., Tanoue, L. T., & Matthay, R. A. (2011). Lung cancer: epidemiology, etiology, and prevention. Clinics in Chest Medicine, 32, 605–644.

    PubMed  Google Scholar 

  28. Zhang, Q., Zeng, L., Chen, Y., Lian, G., Qian, C., Chen, S., et al. (2016). Pancreatic cancer epidemiology, detection, and management. Gastroenterology Research and Practice, 2016, 8962321.

    PubMed  PubMed Central  Google Scholar 

  29. Akram, M., Iqbal, M., Daniyal, M., & Khan, A. U. (2017). Awareness and current knowledge of breast cancer. Biological Research, 50, 33–33.

    PubMed  PubMed Central  Google Scholar 

  30. Hoffman, A. M., & Cairns, P. (2011). Epigenetics of kidney cancer and bladder cancer. Epigenomics, 3, 19–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. De Minicis, S., Kisseleva, T., Francis, H., Baroni, G. S., Benedetti, A., Brenner, D., et al. (2013). Liver carcinogenesis: Rodent models of hepatocarcinoma and cholangiocarcinoma. Digestive and Liver Disease, 45, 450–459.

    PubMed  Google Scholar 

  32. Cuzick, J., Thorat, M. A., Andriole, G., Brawley, O. W., Brown, P. H., Culig, Z., et al. (2014). Prevention and early detection of prostate cancer. The Lancet Oncology, 15, e484–e492.

    PubMed  PubMed Central  Google Scholar 

  33. Terwilliger, T., & Abdul-Hay, M. (2017). Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer Journal, 7, e577–e577.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shanbhag, S., & Ambinder, R. F. (2018). Hodgkin lymphoma: A review and update on recent progress. CA: A Cancer Journal for Clinicians, 68, 116–132.

    Google Scholar 

  35. Nabors, L. B., Ammirati, M., Bierman, P. J., Brem, H., Butowski, N., Chamberlain, M. C., et al. (2013). Central nervous system cancers. Journal of the National Comprehensive Cancer Network, 11, 1114–1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fisher, R., Pusztai, L., & Swanton, C. (2013). Cancer heterogeneity: Implications for targeted therapeutics. British Journal of Cancer, 108, 479–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature, 501, 328–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Joensuu, H., & Dimitrijevic, S. (2001). Tyrosine kinase inhibitor imatinib (STIS71) as an anticancer agent for solid tumours. Annals of Medicine, 33, 451–455.

    CAS  PubMed  Google Scholar 

  39. Li, M., Chen, W.-D., Papadopoulos, N., Goodman, S. N., Bjerregaard, N. C., Laurberg, S., et al. (2009). Sensitive digital quantification of DNA methylation in clinical samples. Nature Biotechnology, 27, 858–863.

    PubMed  PubMed Central  Google Scholar 

  40. Doi, A., Park, I.-H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 41, 1350–1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Esteller, M. (2007). Epigenetic gene silencing in cancer: The DNA hypermethylome. Human Molecular Genetics, 16, R50–R59.

    CAS  PubMed  Google Scholar 

  42. Whitwell, H. J., Worthington, J., Blyuss, O., Gentry-Maharaj, A., Ryan, A., Gunu, R., et al. (2020). Improved early detection of ovarian cancer using longitudinal multimarker models. British Journal of Cancer. https://doi.org/10.1038/s41416-019-0718-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eftimie, R., & Hassanein, E. (2018). Improving cancer detection through combinations of cancer and immune biomarkers: A modelling approach. Journal of Translational Medicine, 16, 73.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Afonso, J., Santos, L. L., Longatto-Filho, A., & Baltazar, F. (2020). Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nature Reviews Urology. https://doi.org/10.1038/s41585-019-0263-6.

    Article  PubMed  Google Scholar 

  45. Padma, V. V. (2015). An overview of targeted cancer therapy. Biomedicine (Taipei), 5, 19–19.

    Google Scholar 

  46. Yap, T. A., & Workman, P. (2012). Exploiting the cancer genome: Strategies for the discovery and clinical development of targeted molecular therapeutics. Annual Review of Pharmacology and Toxicology, 52, 549–573.

    CAS  PubMed  Google Scholar 

  47. Kwak, E. L., Bang, Y. J., Camidge, D. R., Shaw, A. T., Solomon, B., Maki, R. G., et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New England Journal of Medicine, 363, 1693–1703.

    CAS  Google Scholar 

  48. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364, 2507–2516.

    CAS  Google Scholar 

  49. Tian, X., Yan, L., Zhang, D., Guan, X., Dong, B., Zhao, M., & Hao, C. (2016). PTK7 overexpression in colorectal tumors: Clinicopathological correlation and prognosis relevance. Oncology Reports, 36, 1829–1836.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, J. H., Kwon, J., Lee, H. W., Kang, M. C., Yoon, H. J., Lee, S. T., & Park, J. H. (2014). Protein tyrosine kinase 7 plays a tumor suppressor role by inhibiting ERK and AKT phosphorylation in lung cancer. Oncology Reports, 31, 2708–2712.

    CAS  PubMed  Google Scholar 

  51. Ahn, T., Roberts, M. J., Abduljabar, A., Joshi, A., Perera, M., Rhee, H., et al. (2019). A review of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) in renal cell carcinoma (RCC). Molecular Imaging and Biology, 21, 799–807.

    CAS  PubMed  Google Scholar 

  52. Sun, H., Zhu, X., Lu, P. Y., Rosato, R. R., Tan, W., & Zu, Y. (2014). Oligonucleotide aptamers: New tools for targeted cancer therapy. Molecular Therapy: Nucleic Acids, 3, e182.

    CAS  PubMed  Google Scholar 

  53. Aravind, A., Jeyamohan, P., Nair, R., Veeranarayanan, S., Nagaoka, Y., Yoshida, Y., et al. (2012). AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnology and Bioengineering, 109, 2920–2931.

    CAS  PubMed  Google Scholar 

  54. Zhang, J., Chen, R., Fang, X., Chen, F., Wang, Y., & Chen, M. (2015). Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Research, 8, 201–218.

    CAS  Google Scholar 

  55. Meng, Y., Xu, B.-Q., Fu, Z.-G., Wu, B., Xu, B., Chen, Z.-N., & Li, L. (2015). Cytoplasmic EpCAM over-expression is associated with favorable clinical outcomes in pancreatic cancer patients with Hepatitis B virus negative infection. International Journal of Clinical and Experimental Medicine, 8, 22204–22216.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tayama, S., Motohara, T., Narantuya, D., Li, C., Fujimoto, K., Sakaguchi, I., et al. (2017). The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget, 8, 44312–44325.

    PubMed  PubMed Central  Google Scholar 

  57. Fourcade, J., Sun, Z., Chauvin, J.-M., Ka, M., Davar, D., Pagliano, O., et al. (2018). CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight, 3, e121157.

    PubMed Central  Google Scholar 

  58. Bottcher, J. P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., et al. (2018). NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell, 172, 1022–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7, 146–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas, R. K., Baker, A. C., DeBiasi, R. M., Winckler, W., LaFramboise, T., Lin, W. M., et al. (2007). High-throughput oncogene mutation profiling in human cancer. Nature Genetics, 39, 347–351.

    CAS  PubMed  Google Scholar 

  61. Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., et al. (2012). Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature, 481, 506–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine, 366, 883–892.

    CAS  Google Scholar 

  63. Vishwakarma, M., & Piddini, E. (2020). Outcompeting cancer. Nature Review Cancer. https://doi.org/10.1038/s41568-020-0261-2.

    Article  Google Scholar 

  64. Baker, N. E. (2017). Mechanisms of cell competition emerging from Drosophila studies. Current Opinion in Cell Biology, 48, 40–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Di Gregorio, A., Bowling, S., & Rodriguez, T. A. (2016). Cell competition and its role in the regulation of cell fitness from development to cancer. Developmental Cell, 38, 621–634.

    PubMed  Google Scholar 

  66. Claveria, C., & Torres, M. (2016). Cell competition: Mechanisms and physiological roles. Annual Review of Cell and Developmental Biology, 32, 411–439.

    CAS  PubMed  Google Scholar 

  67. Wagstaff, L., Goschorska, M., Kozyrska, K., Duclos, G., Kucinski, I., Chessel, A., et al. (2016). Mechanical cell competition kills cells via induction of lethal p53 levels. Nature Communications, 7, 11373.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Levayer, R., Dupont, C., & Moreno, E. (2016). Tissue crowding induces caspase-dependent competition for space. Current Biology: CB, 26, 670–677.

    CAS  PubMed  Google Scholar 

  69. Vincent, J. P., Kolahgar, G., Gagliardi, M., & Piddini, E. (2011). Steep differences in wingless signaling trigger Myc-independent competitive cell interactions. Developmental Cell, 21, 366–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreno, E., Basler, K., & Morata, G. (2002). Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature, 416, 755–759.

    CAS  PubMed  Google Scholar 

  71. Rhiner, C., Lopez-Gay, J. M., Soldini, D., Casas-Tinto, S., Martin, F. A., Lombardia, L., & Moreno, E. (2010). Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in Drosophila. Developmental Cell, 18, 985–998.

    CAS  PubMed  Google Scholar 

  72. Madan, E., Pelham, C. J., Nagane, M., Parker, T. M., Canas-Marques, R., Fazio, K., et al. (2019). Flower isoforms promote competitive growth in cancer. Nature, 572, 260–264.

    CAS  PubMed  Google Scholar 

  73. Ma, J., Wang, J., Ghoraie, L. S., Men, X., Liu, L., & Dai, P. (2019). Network-based method for drug target discovery at the isoform level. Scientific Reports, 9, 13868.

    PubMed  PubMed Central  Google Scholar 

  74. Maley, C. C., Aktipis, A., Graham, T. A., Sottoriva, A., Boddy, A. M., Janiszewska, M., et al. (2017). Classifying the evolutionary and ecological features of neoplasms. Nature Reviews Cancer, 17, 605–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, B., Zhang, J., Yin, Y., & Zhang, Y. (2013). Network-based inference framework for identifying cancer genes from gene expression data. BioMed Research International. https://doi.org/10.1155/2013/401649.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hori, S. S., Lutz, A. M., Paulmurugan, R., & Gambhir, S. S. (2017). A Model-based personalized cancer screening strategy for detecting early-stage tumors using blood-borne biomarkers. Cancer Research, 77, 2570–2584.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hori, S. S., & Gambhir, S. S. (2011). Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Science Translational Medicine, 3, 109–116.

    Google Scholar 

  78. Kwong, G. A., Dudani, J. S., Carrodeguas, E., Mazumdar, E. V., Zekavat, S. M., & Bhatia, S. N. (2015). Mathematical framework for activity-based cancer biomarkers. Proceedings of the National Academy of Sciences of the USA , 112, 12627–12632.

    CAS  PubMed  Google Scholar 

  79. Wang, Y.-C., & Chen, B.-S. (2011). A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Medical Genomics, 4, 2.

    PubMed  PubMed Central  Google Scholar 

  80. Zeng, T., Sun, S. Y., Wang, Y., Zhu, H., & Chen, L. (2013). Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS Journal, 280, 5682–5695.

    CAS  Google Scholar 

  81. Vilar, S., Gonzalez-Diaz, H., Santana, L., & Uriarte, E. (2009). A network-QSAR model for prediction of genetic-component biomarkers in human colorectal cancer. Journal of Theoretical Biology, 261, 449–458.

    CAS  PubMed  Google Scholar 

  82. von Loga, K., Woolston, A., Punta, M., Barber, L. J., Griffiths, B., Semiannikova, M., et al. (2020). Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer. Nature Communications, 11, 139.

    Google Scholar 

  83. Ludwig, J. A., & Weinstein, J. N. (2005). Biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer, 5, 845.

    CAS  PubMed  Google Scholar 

  84. Chin, L., Andersen, J. N., & Futreal, P. A. (2011). Cancer genomics: From discovery science to personalized medicine. Nature medicine, 17, 297.

    CAS  PubMed  Google Scholar 

  85. Simpson, R. J., Bernhard, O. K., Greening, D. W., & Moritz, R. L. (2008). Proteomics-driven cancer biomarker discovery: Looking to the future. Current Opinion in Chemical Biology, 12, 72–77.

    CAS  PubMed  Google Scholar 

  86. Gal, S., Fidler, C., Lo, Y. M. D., Taylor, M., Han, C., Moore, J., et al. (2004). Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. British Journal of Cancer, 90, 1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sozzi, G., Conte, D., Mariani, L., Vullo, S. L., Roz, L., Lombardo, C., et al. (2001). Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Research, 61, 4675–4678.

    CAS  PubMed  Google Scholar 

  88. Lehninger, A. L., Nelson, D. L., Cox, M. M., & Cox, M. M. (2005). Lehninger principles of biochemistry. New York: Macmillan.

    Google Scholar 

  89. Liu, P., Wang, Y., & Li, X. (2019). Targeting the untargetable KRAS in cancer therapy. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2019.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pantsar, T. (2019). The current understanding of KRAS protein structure and dynamics. Computational and Structural Biotechnology Journal. https://doi.org/10.1016/j.csbj.2019.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xi, X., Li, T., Huang, Y., Sun, J., Zhu, Y., Yang, Y., & Lu, Z. (2017). RNA biomarkers: Frontier of precision medicine for cancer. Non-coding RNA, 3, 9.

    PubMed Central  Google Scholar 

  92. Berindan-Neagoe, I., Monroig, P. D. C., Pasculli, B., & Calin, G. A. (2014). MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 64(311), 336.

    Google Scholar 

  93. Sand, M., Bechara, F. G., Gambichler, T., Sand, D., Bromba, M., Hahn, S. A., et al. (2016). Circular RNA expression in cutaneous squamous cell carcinoma. Journal of Dermatological Science, 83, 210–218.

    CAS  PubMed  Google Scholar 

  94. Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16, 845–850.

    CAS  PubMed  Google Scholar 

  95. Link, A., Balaguer, F., Shen, Y., Nagasaka, T., Lozano, J. J., Boland, C. R., & Goel, A. (2010). Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiology and Prevention Biomarkers, 19, 1766–1774.

    CAS  Google Scholar 

  96. Srinivas, P. R., Verma, M., Zhao, Y., & Srivastava, S. (2002). Proteomics for cancer biomarker discovery. Clinical chemistry, 48, 1160–1169.

    CAS  PubMed  Google Scholar 

  97. Núñez, C. (2019). Blood-based protein biomarkers in breast cancer. Clinica Chimica Acta, 490, 113–127.

    Google Scholar 

  98. Ohno, Y., Maehashi, K., & Matsumoto, K. (2010). Label-free biosensors based on aptamer-modified graphene field-effect transistors. Journal of the American Chemical Society, 132, 18012–18013.

    CAS  PubMed  Google Scholar 

  99. Li, L., Lei, Q., Zhang, S., Kong, L., & Qin, B. (2017). Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncology Reports, 38, 2607–2618.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W., Muehling, J., et al. (2008). Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genetics, 4, e1000167.

    PubMed  PubMed Central  Google Scholar 

  101. Im, H. K., Gamazon, E. R., Nicolae, D. L., & Cox, N. J. (2012). On sharing quantitative trait GWAS results in an era of multiple-omics data and the limits of genomic privacy. American Journal of Human Genetics, 90, 591–598.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schadt, E. E., Woo, S., & Hao, K. (2012). Bayesian method to predict individual SNP genotypes from gene expression data. Nature Genetics, 44, 603–608.

    CAS  PubMed  Google Scholar 

  103. Hildebrand, P. W., Rose, A. S., & Tiemann, J. K. S. (2019). Bringing molecular dynamics simulation data into view. Trends in Biochemical Sciences. https://doi.org/10.1016/j.tibs.2019.06.004.

    Article  PubMed  Google Scholar 

  104. Karplus, M., & Petsko, G. A. (1990). Molecular dynamics simulations in biology. Nature, 347, 631.

    CAS  PubMed  Google Scholar 

  105. Godwin, R. C., Melvin, R., & Salsbury, F. R. (2015). Molecular dynamics simulations and computer-aided drug discovery. In D. B. Singh (Ed.), computer-aided drug discovery (pp. 1–30). New York: Springer.

    Google Scholar 

  106. Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19, 120–127.

    CAS  PubMed  Google Scholar 

  107. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Brooks, B. R., Brooks Iii, C. L., Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545–1614.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Case, D. A., Cheatham Iii, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    CAS  PubMed  Google Scholar 

  111. Rampogu, S., Baek, A., Zeb, A., & Lee, K. W. (2018). Exploration for novel inhibitors showing back-to-front approach against VEGFR-2 kinase domain (4AG8) employing molecular docking mechanism and molecular dynamics simulations. BMC Cancer, 18, 264.

    PubMed  PubMed Central  Google Scholar 

  112. Jeevanandam, J., Tan, K. X., Danquah, M. K., Guo, H., & Turgeson, A. (2019). Advancing aptamers as molecular probes for cancer theranostic applications: The role of molecular dynamics simulation. Biotechnology Journal. https://doi.org/10.1002/biot.201900368.

    Article  Google Scholar 

  113. Danquah, M. K., Guo, H.-B., Tan, K. X., & Bhakta, M. (2020). Atomistic probing of aptameric binding of CD19 outer membrane domain reveals an “aptamer walking” mechanism. Biotechnology Progress, 36, e2957.

    CAS  PubMed  Google Scholar 

  114. Kumar, A., & Purohit, R. (2014). Use of long term molecular dynamics simulation in predicting cancer associated SNPs. PLoS Computational Biology, 10, e1003318.

    PubMed  PubMed Central  Google Scholar 

  115. Weako, J., Uba, A. I., Keskin, Ö., Gürsoy, A., & Yelekçi, K. (2020). Identification of potential inhibitors of human methionine aminopeptidase (type II) for cancer therapy: Structure-based virtual screening, ADMET prediction and molecular dynamics studies. Computational Biology and Chemistry, 86, 107244.

    CAS  PubMed  Google Scholar 

  116. Reddy, P. S., & K. B. L., Shuchi Nagar, Vaddi Damodara Reddy, P. Sushma Murthy, K. Venkateswara Swamy, . (2018). Molecular Modeling, Docking, Dynamics and Simulation of Gefitinib and its Derivatives with EGFR in Non-small Cell Lung Cancer. Current Computer-Aided Drug Design, 14, 246–252.

    CAS  PubMed  Google Scholar 

  117. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rich, R. L., & Myszka, D. G. (2004). Why you should be using more SPR biosensor technology. Drug Discovery Today: Technologies, 1, 301–308.

    CAS  PubMed  Google Scholar 

  119. Suenaga, A., Ichikawa, M., Hatakeyama, M., Yu, X., Futatsugi, N., Narumi, T., et al. (2003). Molecular dynamics, free energy, and SPR analyses of the interactions between the SH2 domain of Grb2 and ErbB phosphotyrosyl peptides. Biochemistry, 42, 5195–5200.

    CAS  PubMed  Google Scholar 

  120. Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., et al. (2019). Amber 11. San Francisco: University of California.

    Google Scholar 

  121. Amiri, M., Ajloo, D., Fazli, M., Mokhtarieh, A., Grivani, G., & Saboury, A. A. (2018). Spectroscopic, electrochemical, docking and molecular dynamics studies on the interaction of three oxovanadium (IV) Schiff base complexes with bovine serum albumin and their cytotoxicity against cancer. Journal of Biomolecular Structure and Dynamics, 36, 3753–3772.

    CAS  PubMed  Google Scholar 

  122. Rao, N. V., Yoon, H. Y., Han, H. S., Ko, H., Son, S., Lee, M., et al. (2016). Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opinion on Drug Delivery, 13, 239–252.

    CAS  PubMed  Google Scholar 

  123. Bonifert, G., Folkes, L., Gmeiner, C., Dachs, G., & Spadiut, O. (2016). Recombinant horseradish peroxidase variants for targeted cancer treatment. Cancer Medicine, 5, 1194–1203.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dong, K., Zhang, Y., Zhang, L., Wang, Z., Ren, J., & Qu, X. (2019). Facile preparation of metal−organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment. Talanta, 194, 703–708.

    CAS  PubMed  Google Scholar 

  125. Gavande, N. S., VanderVere-Carozza, P. S., Hinshaw, H. D., Jalal, S. I., Sears, C. R., Pawelczak, K. S., & Turchi, J. J. (2016). DNA repair targeted therapy: The past or future of cancer treatment? Pharmacology and Therapeutics, 160, 65–83.

    CAS  PubMed  Google Scholar 

  126. Wang, H., & Mooney, D. J. (2018). Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 17, 761–772.

    CAS  PubMed  Google Scholar 

  127. Jeevanandam, J., Pal, K., & Danquah, M. K. (2018). Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie, 157, 38–47.

    PubMed  Google Scholar 

  128. Jeevanandam, J., Sundaramurthy, A., Sharma, V., Murugan, C., Pal, K., Kodous, M. H. A., & Danquah, M. K. (2020). Sustainability of One-Dimensional Nanostructures: Fabrication and Industrial Applications. In G. Székely & A. G. Livingston (Eds.), Sustainable nanoscale engineering (pp. 83–113). New York: Elsevier.

    Google Scholar 

  129. Kuryk, L., Vassilev, L., Ranki, T., Hemminki, A., Karioja-Kallio, A., Levälampi, O., et al. (2017). Toxicological and bio-distribution profile of a GM-CSF-expressing, double-targeted, chimeric oncolytic adenovirus ONCOS-102: Support for clinical studies on advanced cancer treatment. PLoS ONE, 12, e0182715.

    PubMed  PubMed Central  Google Scholar 

  130. Massacesi, C., Di Tomaso, E., Urban, P., Germa, C., Quadt, C., Trandafir, L., et al. (2016). PI3K inhibitors as new cancer therapeutics: Implications for clinical trial design. OncoTargets and Therapy, 9, 203–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mirzaei, H., Sahebkar, A., Salehi, R., Nahand, J., Karimi, E., Jaafari, M., & Mirzaei, H. (2016). Boron neutron capture therapy: Moving toward targeted cancer therapy. Journal of Cancer Research and Therapeutics, 12, 520–525.

    CAS  PubMed  Google Scholar 

  132. Mishra, P., Nayak, B., & Dey, R. K. (2016). PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences, 11, 337–348.

    Google Scholar 

  133. Li, Y., Atkinson, K., & Zhang, T. (2017). Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Letters, 396, 103–109.

    CAS  PubMed  Google Scholar 

  134. Belfiore, L., Saunders, D. N., Ranson, M., Thurecht, K. J., Storm, G., & Vine, K. L. (2018). Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. Journal of Controlled Release, 277, 1–13.

    CAS  PubMed  Google Scholar 

  135. Yeku, O., Zamarin, D., Gallagher, J., Aghajanian, C. A., & Konner, J. (2018). A phase II trial of TPIV200 (a polypeptide vaccine against folate receptor alpha) plus durvalumab (anti-PD-L1 antibody) in patients with platinum-resistant ovarian cancer. Gynecologic Oncology, 149, 56–57.

    Google Scholar 

  136. Fuller, S., Tomai, M., Sesay, M., Cunningham, D. & Price, J. (2017). Optimizing a unique cancer vaccine for intradermal delivery. BioPharm International Development Strategies for Emerging Therapies eBook.

  137. Hill, A., Gotham, D., Fortunak, J., Meldrum, J., Erbacher, I., Martin, M., et al. (2016). Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment. British Medical Journal Open, 6, e009586.

    Google Scholar 

  138. Meegan, M. J., & O’Boyle, N. M. (2019). Special issue “anticancer drugs.” Basel: Multidisciplinary Digital Publishing Institute.

    Google Scholar 

  139. Peiris, D., Spector, A. F., Lomax-Browne, H., Azimi, T., Ramesh, B., Loizidou, M., et al. (2017). Cellular glycosylation affects herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Scientific Reports, 7, 43006.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Corrie, P. G., Terheyden, P., Ten Tije, A. J., Herbst, R., Jansen, R., Marples, M., et al. (2019). A prospective observational safety study of patients with BRAFV 600-mutated unresectable or metastatic melanoma treated with vemurafenib (Zelboraf Safety Study). British Journal of Dermatology, 180, 1254–1255.

    CAS  Google Scholar 

  141. Somlyai, G., Collins, T. Q., Meuillet, E. J., Hitendra, P., D’Agostino, D. P., & Boros, L. G. (2017). Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma. Oncotarget, 8, 50187.

    PubMed  PubMed Central  Google Scholar 

  142. Parvizpour, S., Razmara, J., & Omidi, Y. (2018). Breast cancer vaccination comes to age: Impacts of bioinformatics. BioImpacts: BI, 8, 223.

    CAS  PubMed  Google Scholar 

  143. Barbolosi, D., Ciccolini, J., Lacarelle, B., Barlési, F., & André, N. (2016). Computational oncology: Mathematical modelling of drug regimens for precision medicine. Nature Reviews Clinical Oncology, 13, 242.

    PubMed  Google Scholar 

  144. Nalley, C. (2019). Utilizing computational oncology to better understand AML and MDS patients. Oncology Times, 41, 13.

    Google Scholar 

  145. Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D., & Lu, X. (2018). Precision oncology beyond targeted therapy: Combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Molecular Cancer Research, 16, 269–278.

    CAS  PubMed  Google Scholar 

  146. Bibault, J.-E., Giraud, P., & Burgun, A. (2016). Big data and machine learning in radiation oncology: State of the art and future prospects. Cancer Letters, 382, 110–117.

    CAS  PubMed  Google Scholar 

  147. Majumder, J., Fine, J. A., Lantz, T. C., Conder, C. J., & Chopra, G. (2018). Abstract LB-076: Cancer cell specific lethality by degrading specific protein target network identified using a chemical screening based machine learning method. Cancer Research, 78, 076.

    Google Scholar 

  148. Wu, D., Yu, Y., Jin, D., Xiao, M.-M., Zhang, Z.-Y., & Zhang, G.-J. (2020). Dual-aptamer modified graphene field-effect transistor nanosensor for label-free and specific detection of hepatocellular carcinoma-derived microvesicles. Analytical Chemistry, 92, 4006–4015.

    CAS  PubMed  Google Scholar 

  149. Mehmood, S., Khan, A. Z., Bilal, M., Sohail, A., & Iqbal, H. M. N. (2019). Aptamer-based biosensors: A novel toolkit for early diagnosis of cancer. Materials Today Chemistry, 12, 353–360.

    CAS  Google Scholar 

  150. Dehghani, S., Nosrati, R., Yousefi, M., Nezami, A., Soltani, F., Taghdisi, S. M., et al. (2018). Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosensors and Bioelectronics, 110, 23–37.

    CAS  PubMed  Google Scholar 

  151. Hao, Z., Pan, Y., Huang, C., Wang, Z., & Zhao, X. (2019). Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomedical Microdevices, 21, 65.

    PubMed  Google Scholar 

  152. Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., et al. (2016). Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials, 91, 44–56.

    CAS  PubMed  Google Scholar 

  153. Ouyang, C., Zhang, S., Xue, C., Yu, X., Xu, H., Wang, Z., et al. (2020). Precision guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.9b09782.

    Article  PubMed  Google Scholar 

  154. da Silva Luz, G. V., Barros, K. V. G., de Araújo, F. V. C., da Silva, G. B., da Silva, P. A. F., Condori, R. C. I., & Mattos, L. (2016). Nanorobotics in drug delivery systems for treatment of cancer: A review. Journal of Material Sciences and Engineering A, 6, 167–180.

    Google Scholar 

  155. Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., et al. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258

    CAS  PubMed  Google Scholar 

  156. Hoop, M., Ribeiro, A. S., Rösch, D., Weinand, P., Mendes, N., Mushtaq, F., et al. (2018). Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Advanced Functional Materials, 28, 1705920.

    Google Scholar 

  157. Ma, W., Zhan, Y., Zhang, Y., Shao, X., Xie, X., Mao, C., et al. (2019). An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Letters. https://doi.org/10.1021/acs.nanolett.9b01320.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Serrà, A., Vázquez-Mariño, G., García-Torres, J., Bosch, M., & Vallés, E. (2018). Magnetic actuation of multifunctional nanorobotic platforms to induce cancer cell death. Advanced Biosystem, 2, 1700220.

    Google Scholar 

  159. Jeevanandam, J., Aing, Y. S., Chan, Y. S., Pan, S., & Danquah, M. K. (2017). Nanoformulation and application of phytochemicals as antimicrobial agents. In A. Mehai (Ed.), Antimicrobial nanoarchitectonics: From synthesis to applications (Vol. 1, pp. 62–82). New York: Elsevier.

    Google Scholar 

  160. Jeevanandam, J., San Chan, Y., & Danquah, M. K. (2016). Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 128, 99–112.

    PubMed  Google Scholar 

  161. Jeevanandam, J., Chan, Y. S., Pan, S., & Danquah, M. K. (2019). Metal oxide nanocomposites: Cytotoxicity and targeted drug delivery applications. In K. Pal (Ed.), Hybrid nanocomposites: Fundamentals, synthesis and applications (pp. 111–147). Singapore: Pan Stanford Publishing.

    Google Scholar 

Download references

Acknowledgements

The author (Dr. Jaison Jeevanandam) acknowledge the support of FCT-Fundação para a Ciência e a Tecnologia (Base Fund UIDB/00674/2020 and Programmatic Fund UIDP/00674/2020, Portuguese Government Funds), ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação through the project M1420-01-0145-FEDER-000005-CQM+ (Madeira 14-20 Program).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JJ, GS, and KXT prepared the manuscript. JJ finalized the manuscript format and structure. MKD reviewed and revised the final manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Michael K. Danquah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeevanandam, J., Sabbih, G., Tan, K.X. et al. Oncological Ligand-Target Binding Systems and Developmental Approaches for Cancer Theranostics. Mol Biotechnol 63, 167–183 (2021). https://doi.org/10.1007/s12033-020-00296-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00296-2

Keywords

Navigation