Skip to main content
Log in

A topological invariant for continuous fields of Cuntz algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We wish to investigate continuous fields of the Cuntz algebras. The Cuntz algebras \({\mathcal {O}}_{n+1}, n\ge 1\) play an important role in the theory of operator algebras, and they are characterized by their K-groups \(K_0({\mathcal {O}}_{n+1})={\mathbb {Z}}_n\), the cyclic groups of order \(n\ge 1\). Since the mod n K-group for a compact Hausdorff space can be realized by the K-group of the trivial continuous field of \({\mathcal {O}}_{n+1}\) over the space, one can regard \({\mathcal {O}}_{n+1}\) as a noncommutative analogue of the Moore space of \({\mathbb {Z}}_n\), and classifying continuous fields of the Cuntz algebras is an interesting problem. M. Dadarlat classifies these fields which are constructed from the vector bundles of rank \(n+1\), and he also showed that not every continuous field comes from the vector bundle. For a continuous field of \({\mathcal {O}}_{n+1}\) over a finite CW complex, we introduce a topological invariant, which is an element in Dadarlat–Pennig’s generalized cohomology group, and prove that the invariant is trivial if and only if the field comes from a vector bundle via Pimsner’s construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: Vector fields on spheres. Ann. Math. (3) 75, 603–632 (1962)

    Article  MathSciNet  Google Scholar 

  2. Akemann, C.A., Pedersen, G.K., Tomiyama, J.: Multipliers of C*-algebras. J. Funct. Anal. 13, 277–301 (1973)

    Article  Google Scholar 

  3. Blackadar, B.: K-Theory for Operator Algebras, 2nd edn. Math. Sci. Inst. Publ., vol. 5. Cambridge University Press, Cambridge (1998)

  4. Cuntz, J.: K-theory for certain C*-algebras. Ann. Math. (2) 113(1), 181–197 (1981)

    Article  MathSciNet  Google Scholar 

  5. Dadarlat, M., Pennig, U.: A Dixmier–Douady theory for strongly self-absorbing C*-algebras. J. Reine Angew. Math. 718, 153–181 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Dadarlat, M., Pennig, U.: A Dixmier–Douady theory for strongly self-absorbing C*-algebras II: the Brauer group. J. Noncommut. Geom. 9(4), 1137–1154 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dadarlat, M.: The C*-algebra of a vector bundle. J. Reine Angew. Math. 670, 121–143 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Dadarlat, M.: Continuous fields of C*-algebras over finite dimensional spaces. Adv. Math. 222(5), 1850–1881 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dadarlat, M.: Fiberwise \(KK\)-equivalence of continuous fields of C*-algebras. J. K-Theory 3(2), 205–219 (2009)

    Article  MathSciNet  Google Scholar 

  10. Dadarlat, M., Winter, W.: On the KK-theory of strongly self-absorbing C*-algebras. Math. Scand. 104(1), 95–107 (2009)

    Article  MathSciNet  Google Scholar 

  11. Davis, J.F., Kirk, P.: Lecture notes in algebraic topology. In: Graduate Studies in Mathematics, vol. 35. American Mathematical Society, Providence (2001)

  12. Dixmier, J., Douady, A.: Champs continus d’espaces hilbertiens et de C*-algebres. Bull. Soc. Math. Fr. 91, 227–284 (1963)

    Article  MathSciNet  Google Scholar 

  13. Elliott, G.A., Kucerovsky, D.: An abstract Voiculescu–Brown–Douglas–Fillmore absorption theorem. Pac. J. Math. 198(2), 385–409 (2001)

    Article  MathSciNet  Google Scholar 

  14. Gabe, J.: A note on non-unital absorbing extensions. Pac. J. Math. 284(2), 383–393 (2016)

    Article  MathSciNet  Google Scholar 

  15. Higson, N., Cuntz, J.: Kuiper’s theorem for Hilbert modules. Contemp. Math. 62, 429–434 (1987)

    Article  MathSciNet  Google Scholar 

  16. Hirshberg, I., Rrdam, M., Winter, W.: \(C_0(X)\)-algebras, stability and strongly self-absorbing C*-algebras. Math. Ann. 339(3), 695–732

  17. Husemoller, D.: Fibre bundles, 3rd edn. In: Grad. texts math. vol. 20. Springer, New York (1994)

  18. Izumi, M., Sogabe, T.: The group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra. Int. J. Math. (11) 30 (2019)

  19. Izumi, M., Matui, H.: Poly-\({\mathbb{Z}}\) group actions on Kirchberg algebras II. arXiv:1906.03818v1

  20. Jiang, X.: Nonstable K-theory for \({\cal{Z}}\)-stable C*-algebras. arXiv:9707.5228 [math.OA] (1997)

  21. Kasparov, G.G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)

    Article  MathSciNet  Google Scholar 

  22. Katsura, T.: On C*-algebras associated with C*-correspondences. J. Funct. Anal. 217, 366–401 (2004)

    Article  MathSciNet  Google Scholar 

  23. Lin, H.: Full extensions and approximate unitary equivalence. Pac. J. Math. 229(2), 389–428 (2007)

    Article  MathSciNet  Google Scholar 

  24. Meyer, R., Nest, R.: The Baum–Connes conjecture via localisation of categories. Topology 45(0.2), 209–259 (2006)

    Article  MathSciNet  Google Scholar 

  25. Mingo, J.A.: K-theory and multipliers of stable C*-algebras. Trans. Am. Math. Soc. 299(1), 397–411 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Paschke, W.L., Salinas, N.: Matrix algebras over \({\cal{O}}_{n+1}\). Mich. Math. J. 26(1), 3–12 (1979)

    Article  Google Scholar 

  27. Pimsner, M.: A class of C*-algebras generalizing both Cuntz–Krieger algebras and crossed products by \({\mathbb{Z}}\). Fields Inst. Commun. 12, 189–212 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Raeburn, I., Williams, D.P.: Morita equivalence and continuous-trace C*-algebras. In: Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence, RI (1998)

  29. Rørdam, M.: The stable and the real rank of \({\cal{Z}}\)-absorbing C*-algebras. Int. J. Math. 15(10), 1065–1084 (2004)

    Article  MathSciNet  Google Scholar 

  30. Rosenberg, J.: Topology, C*-algebras, and String Duality. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  31. Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor. Duke Math. J. 55(2), 431–474 (1987)

    Article  MathSciNet  Google Scholar 

  32. Schochet, C.L.: The Dixmier–Douady invariant for Dummies. Not. Am. Math. Soc. 56(7), 809–816 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Sogabe, T.: The homotopy groups of the automorphism groups of Cuntz–Toeplitz algebras. J. Math. Soc. Jpn. arXiv:1903.02796(To appear)

  34. Toms, A.S., Winter, W.: Strongly self-absorbing C*-algebras. Trans. Am. Math. Soc. 359(8), 3999–4029 (2007)

    Article  MathSciNet  Google Scholar 

  35. Whitehead, G. W.: Elements of Homotopy Theory, Grad. Texts in Math. vol. 61. Springer, New York (1978)

  36. Winter, W.: Strongly self-absorbing C*-algebras are \({\cal{Z}}\)-stable. J. Noncommut. Geom. 5(2), 253–264 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his greatest appreciation to his supervisor Prof. Masaki Izumi who informed him of Theorem 5.3 and gave him the idea of the construction of the invariant and many other insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Sogabe.

Additional information

Communicated by Thomas Schick.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sogabe, T. A topological invariant for continuous fields of Cuntz algebras. Math. Ann. 380, 91–117 (2021). https://doi.org/10.1007/s00208-020-02101-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02101-6

Navigation