Skip to main content
Log in

Coriolis effect on temporal decay rates of global solutions to the fractional Navier–Stokes equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The incompressible fractional Navier–Stokes equations in the rotational framework is considered. We establish the global existence result and temporal decay estimate for a unique smooth solution when the speed of rotation is sufficiently rapid. It is found that the strong rotational effect enhances the temporal decay rate of a certain norm of the velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids. Asympt. Anal. 15, 103–150 (1997). https://doi.org/10.3233/asy-1997-15201

    Article  MATH  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999). https://doi.org/10.1512/iumj.1999.48.1856

    Article  MathSciNet  MATH  Google Scholar 

  3. Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50, 1–35 (2001). https://doi.org/10.1512/iumj.2001.50.2155

    Article  MathSciNet  MATH  Google Scholar 

  4. Baroud, C.N., Plapp, B.B., Swinney, H.L., She, Z.-S.: Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows. Phys. Fluids 15, 2091–2104 (2003). https://doi.org/10.1063/1.1577120

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, D., Lee, J.: On the global well-posedness and stability of the Navier–Stokes and the related equations. Contrib. Curr. Challenges Math. Fluid Mech. (2004). https://doi.org/10.1007/978-3-0348-7877-7_-2

    Article  MATH  Google Scholar 

  6. Chemin, J.Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and Dispersion in Rotating Fluids. Studies in Applied Mathematics, vol. 31, pp. 171–192. North-Holland, Amsterdam (2002). https://doi.org/10.1016/s0168-2024(02)80010-8

    Book  MATH  Google Scholar 

  7. Chemin, J.Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier–Stokes Equations, vol. 32. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  8. Giga, Y., Inui, K., Mahalov, A., Saal, J.: Uniform global solvability of the rotating Navier–Stokes equations for nondecaying initial data. Indiana Univ. Math. J. 57, 2775–2791 (2008). https://doi.org/10.1512/iumj.2008.57.3795

    Article  MathSciNet  MATH  Google Scholar 

  9. Hieber, M., Shibata, Y.: The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework. Math. Z. 265, 481–491 (2010). https://doi.org/10.1007/s00209-009-0525-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Hough, S.S.: On the application of harmonic analysis to the dynamical theory of the tides. Part I. On Laplace’s ‘oscillations of the first species”, and on the dynamics of ocean currents. Proc. R. Soc. Lond. 61, 236–238 (1997). https://doi.org/10.1098/rspl.1897.0028

    Article  Google Scholar 

  11. Iwabuchi, T., Takada, R.: Global solutions for the Navier–Stokes equations in the rotational framework. Math. Ann. 357, 727–741 (2013). https://doi.org/10.1007/s00208-013-0923-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Iwabuchi, T., Takada, R.: Dispersive effect of the Coriolis force and the local well-posedness for the Navier–Stokes equations in the rotational framework. Funkcialaj Ekvacioj 58, 365–385 (2015). https://doi.org/10.1619/fesi.58.365

    Article  MathSciNet  MATH  Google Scholar 

  13. Kishimoto, N., Yoneda, T.: Global solvability of the rotating Navier–Stokes equations with fractional Laplacian in a periodic domain. Math. Ann. 372, 743–779 (2018). https://doi.org/10.1007/s00208-017-1605-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Koh, Y., Lee, S., Takada, R.: Strichartz estimates for the Euler equations in the rotational framework. J. Differ. Equ. 256, 707–744 (2014). https://doi.org/10.1016/j.jde.2013.09.017

    Article  MathSciNet  MATH  Google Scholar 

  15. Koh, Y., Lee, S., Takada, R.: Dispersive estimates for the Navier–Stokes equations in the rotational framework. Adv. Differ. Equ. 19, 857–878 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Lions, J.L.: Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires. Donud, Paris (1969)

    MATH  Google Scholar 

  17. Miao, C., Yuan, B., Zhang, B.: Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. 68, 461–484 (2008). https://doi.org/10.1016/j.na.2006.11.011

    Article  MathSciNet  MATH  Google Scholar 

  18. Proudman, J.: On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. Ser. A 92, 408–424 (1916). https://doi.org/10.1098/rspa.1916.0026

    Article  MATH  Google Scholar 

  19. Seshasayanan, K., Alexakis, A.: Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434–462 (2018). https://doi.org/10.1017/jfm.2018.106

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, X., Ding, Y.: Dispersive effect of the Coriolis force and the local well-posedness for the fractional Navier–Stokes-Coriolis system. J. Evol. Equ. (2019). https://doi.org/10.1007/s00028-019-00531-7

    Article  MATH  Google Scholar 

  21. Taylor, G.I.: Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. Ser. A 93, 99–113 (1917). https://doi.org/10.1098/rspa.1917.0007

    Article  MATH  Google Scholar 

  22. Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. Henri Poincare (C) Non Linear Anal. 24, 491–505 (2007). https://doi.org/10.1016/j.anihpc.2006.03.014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express sincere gratitude to the anonymous referees for their helpful remarks and their careful reading of our manuscript. J. Lee’s work is supported by NRF Grant No. 2016R1A2B3011647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewook Ahn.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we prove Lemmas 89 and provide a regularity criteria for (2). We use the notations (27) and (35) for convenience. We note, from the embedding relation \((\dot{H}^s \cap \dot{H}^s_q)(\mathbb {R}^3)\hookrightarrow L^{2}(\mathbb {R}^{3})\) and the skew–symmetry of \(\varOmega e_{3}\times u\), that a solution u in Lemma 8 or Lemma 9 satisfies

$$\begin{aligned} \left\| u(\cdot ,t) \right\| _{L^{2}(\mathbb {R}^{3})}^{2}+2\int _{0}^{t}\Big \Vert ( -\varDelta )^{\frac{\alpha }{2}} u(\cdot ,\tau )\Big \Vert _{L^{2}(\mathbb {R}^{3})}^{2}d\tau \le \left\| u_{0} \right\| _{L^{2}(\mathbb {R}^{3})}^{2},\qquad t>0. \end{aligned}$$
(A.1)

Proof of Theorem 3

By Lemma 1 and the boundedness properties of Leray projection, we have

$$\begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \nonumber \\&\quad \le C \int _0^{\frac{t}{2}} \left( t - \tau \right) ^{- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } ( \frac{1}{r} - \frac{1}{p} )} (1 + |\varOmega | (t-\tau ))^{- ( 1 - \frac{2}{p} )} \left\| (u \otimes u )(\tau )\right\| _{L^r} d\tau ,\nonumber \\ \end{aligned}$$
(A.2)

where \(r>1\) is a number

$$\begin{aligned} r = \left( \alpha \Big ( \frac{1}{p} - \frac{s}{3} \Big )+ 1 - \frac{\alpha }{2} \right) ^{-1}. \end{aligned}$$

Note that \(1-\frac{1}{p}<\frac{1}{r}\). Indeed, by the upper inequality of (3)\(_{1}\) and \(\frac{1}{2}<\alpha \le \frac{5}{4}\), we have \( s<\ \frac{3(5-2\alpha )}{2(2\alpha +3)}< \frac{3(2-\alpha )}{2(2\alpha -1)} \) and thus, it follows from the lower inequality of (3)\(_{2}\) that \( \frac{\alpha }{\alpha +1}\left( \frac{s}{3}+\frac{1}{2} \right) <\frac{1}{3}+\frac{s}{9}\le \frac{1}{p}\), and so \(1-\frac{1}{p}<\frac{1}{r}\). Using the interpolation inequality

$$\begin{aligned} \left\| u \otimes u \right\| _{L^r} \le C \left\| u \right\| _{\dot{H}^s_p}^{\alpha } \left\| u \right\| _{L^2}^{2 - \alpha }, \end{aligned}$$

(A.1), and a direct computation, we have

$$\begin{aligned}&\int _0^{\frac{t}{2}} \left( t - \tau \right) ^{- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } ( \frac{1}{r} - \frac{1}{p} )} (1 + |\varOmega | (t-\tau ))^{- ( 1 - \frac{2}{p} )} \left\| (u \otimes u )(\tau )\right\| _{L^r} d\tau \nonumber \\&\quad \le C t^{- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \alpha (\frac{1}{p} - \frac{ s}{3}) + 1 - \frac{\alpha }{2} - \frac{1}{q}\right) } \left\| u_0 \right\| _{L^2}^{2 - \alpha } \Vert u\Vert _{X^s_{p,q}} ^{\alpha }(t) R(t)^{-1}J, \end{aligned}$$
(A.3)

where \( J:= \int _0^{\frac{t}{2}} R(\tau )^{-\alpha }d\tau \). Using change of variable \(\tilde{\tau } = |\varOmega |\tau \), we note that

$$\begin{aligned} J= |\varOmega |^{- 1 + \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} \int _0^{\frac{|\varOmega |t}{2}} {\tilde{\tau }}^{- \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} (1 + \tilde{\tau })^{-\alpha ( 1 - \frac{2}{p} )} d\tilde{\tau }. \end{aligned}$$
(A.4)

Using \( \frac{1}{p} \ge \frac{1}{3}>\frac{1}{q} - \frac{2}{3} \), we also note that

$$\begin{aligned} 1- \frac{3}{2} \left( \frac{1}{q} - \frac{1}{p} \right) >0. \end{aligned}$$
(A.5)

Now, we consider two cases

$$\begin{aligned} 1-\frac{3}{2} \left( \frac{1}{q} - \frac{1}{p} \right) - \alpha \left( 1 - \frac{2}{p} \right) <0,\quad \text{ and } \quad 1-\frac{3}{2} \left( \frac{1}{q} - \frac{1}{p} \right) - \alpha \left( 1 - \frac{2}{p} \right) \ge 0, \end{aligned}$$

separately.

In the case of

$$\begin{aligned} 1-\frac{3}{2} \left( \frac{1}{q} - \frac{1}{p} \right) - \alpha \left( 1 - \frac{2}{p} \right) <0, \end{aligned}$$

the boundedness of the integral term in (A.4) gives

$$\begin{aligned} J\le C|\varOmega |^{- 1 + \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} . \end{aligned}$$

Thus, it follows from (A.2)–(A.3) that

$$\begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \\&\quad \le C t^{- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \alpha (\frac{1}{p} - \frac{ s}{3}) + 1 - \frac{\alpha }{2} - \frac{1}{q} \right) } |\varOmega |^{- 1 + \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} \left\| u_0 \right\| _{L^2}^{2 - \alpha } \Vert u\Vert _{X^s_{p,q}} ^{\alpha }(t) R(t)^{-1}. \end{aligned}$$

Using \(\frac{1}{p}\ge \frac{1}{3}+\frac{s}{9}\) and \(q>1\), we note that

$$\begin{aligned}&- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \alpha \Big (\frac{1}{p} - \frac{ s}{3}\Big ) + 1 - \frac{\alpha }{2} - \frac{1}{q} \right) \\&\quad \le - \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2} \left( \Big (\frac{1}{3}+\frac{s}{9}- \frac{ s}{3} \Big ) - \frac{1}{2} \right) = -\frac{1}{2\alpha }+\frac{1}{4} - \frac{s}{2\alpha } +\frac{s}{3}, \end{aligned}$$

and thus,

$$\begin{aligned} - \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \alpha \Big (\frac{1}{p} - \frac{ s}{3}\Big ) + 1 - \frac{\alpha }{2} - \frac{1}{q} \right) <0. \end{aligned}$$

By this fact with \(t\ge 1\), it follows that

$$\begin{aligned} \int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \le C |\varOmega |^{- 1 + \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} \left\| u_0 \right\| _{L^2}^{2 - \alpha } \Vert u\Vert _{X^s_{p,q}}^{\alpha } (t) R(t)^{-1}. \end{aligned}$$

Therefore, (47) is obtained.

We next deal with the case

$$\begin{aligned} 1-\frac{3}{2} \left( \frac{1}{q} - \frac{1}{p} \right) - \alpha \left( 1 - \frac{2}{p} \right) \ge 0. \end{aligned}$$

By a direct calculation, if \(1-\frac{3}{2} \left( \frac{1}{q} - \frac{1}{p} \right) - \alpha \left( 1 - \frac{2}{p} \right) >0\), then we have

$$\begin{aligned} \begin{aligned}&\int _0^{\frac{|\varOmega |t}{2}} {\tilde{\tau }}^{- \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )}(1+\tilde{\tau })^{ - \alpha ( 1 - \frac{2}{p} )}d\tilde{\tau } \\&\quad \le C|\varOmega |^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} t^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} \\&\quad \le C|\varOmega |^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} t^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} \log (|\varOmega | + e) \log (t + e), \end{aligned} \end{aligned}$$

and if \(1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )=0\), then we have

$$\begin{aligned} \begin{aligned}&\int _0^{\frac{|\varOmega |t}{2}} {\tilde{\tau }}^{- \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )}(1+\tilde{\tau })^{-\alpha ( 1 - \frac{2}{p} )}d\tilde{\tau } \\&\quad \le C \log (|\varOmega | + e) \log (t + e) \\&\quad = C|\varOmega |^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} t^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} \log (|\varOmega | + e) \log (t + e). \end{aligned} \end{aligned}$$

Thus, we can compute J in (A.4) as

$$\begin{aligned} \begin{aligned} J&\le |\varOmega |^{- 1 + \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} \int _0^{\frac{|\varOmega |t}{2}} {\tilde{\tau }}^{- \frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )} (1 + \tilde{\tau })^{-\alpha ( 1 - \frac{2}{p} )} d\tilde{\tau } \\&\le C t^{1-\frac{3}{2} ( \frac{1}{q} - \frac{1}{p} )- \alpha ( 1 - \frac{2}{p} )} \log (t + e) |\varOmega |^{- \alpha ( 1 - \frac{2}{p} )} \log (|\varOmega | + e). \end{aligned} \end{aligned}$$

Then, it follows from (A.3) that

$$\begin{aligned} \begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \\&\quad \le C t^{\frac{7}{4}-\frac{2}{\alpha }+(\frac{3}{2q}-\frac{s}{2})(\frac{1}{\alpha }-1)-\alpha (1-\frac{2}{p})} \log (t + e) \\&\qquad \cdot |\varOmega |^{- \alpha ( 1 - \frac{2}{p} )} \log (|\varOmega | + e) \left\| u_0 \right\| _{L^2}^{2 - \alpha } \Vert u\Vert _{X^s_{p,q}} ^{\alpha }(t) R(t)^{-1}. \end{aligned} \end{aligned}$$

In the case of \(\frac{1}{2}<\alpha < 1\), we have

$$\begin{aligned} \begin{aligned}&\frac{7}{4}-\frac{2}{\alpha }+\Big (\frac{3}{2q}-\frac{s}{2}\Big )\Big (\frac{1}{\alpha }-1\Big )-\alpha \Big (1-\frac{2}{p}\Big )<\frac{7}{4}-\frac{2}{\alpha } + \Big (\frac{3}{2}-\frac{s}{2}\Big )\Big (\frac{1}{\alpha }-1\Big ) \\&\quad = \frac{1}{4} - \frac{1}{2\alpha } - \frac{s}{2} \Big ( \frac{1}{\alpha }- 1\Big ) \\&\quad <0. \end{aligned} \end{aligned}$$

In the case of \(1\le \alpha \le \frac{5}{4}\), using \(\frac{5}{2} - 2\alpha < s\), we have

$$\begin{aligned} \begin{aligned}&\frac{7}{4}-\frac{2}{\alpha }+\Big (\frac{3}{2q}-\frac{s}{2}\Big )\Big (\frac{1}{\alpha }-1\Big )-\alpha \Big (1-\frac{2}{p}\Big )\\&\quad<\frac{7}{4}-\frac{2}{\alpha }+\left( \frac{3}{2} \Big ( \frac{1}{2} + \frac{s}{3}\Big )-\frac{s}{2}\right) \Big (\frac{1}{\alpha }-1\Big )-\alpha \left( 1-2\Big (\frac{5}{12\alpha }+\frac{1}{6}-\frac{s}{6\alpha }\Big ) \right) \\&\quad =\frac{11}{6} - \frac{5}{4\alpha } - \frac{2\alpha }{3} - \frac{s}{3} \\&\quad < 1 - \frac{5}{4\alpha } \\&\quad \le 0. \end{aligned} \end{aligned}$$

Hence, with \(t > 1\) we observe that

$$\begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \\&\quad \le C|\varOmega |^{- \alpha ( 1 - \frac{2}{p} )} \log (|\varOmega | + e) \left\| u_0 \right\| _{L^2}^{2 - \alpha } \Vert u\Vert _{X^s_{p,q}} ^{\alpha }(t) R(t)^{-1}. \end{aligned}$$

Therefore, (47) is obtained. This completes the proof.

Proof of ....

By (A.1) and interpolation inequality, we have

$$\begin{aligned} \left\| u \otimes u \right\| _{L^r} \le C \left\| u \right\| _{\dot{H}^s_p}^{\frac{6\alpha }{4\alpha + 1}} \left\| u_0 \right\| _{L^2}^{2 - \frac{6\alpha }{4\alpha + 1}}, \end{aligned}$$

where \(r >1\) is a number

$$\begin{aligned} r = \left( \frac{6\alpha }{4\alpha + 1} \Big ( \frac{1}{p} - \frac{s}{3} \Big ) + 1 - \frac{3\alpha }{4\alpha + 1} \right) ^{-1}. \end{aligned}$$

Note that \(1-\frac{1}{p}<\frac{1}{r}\). Indeed, by the upper inequality of (3)\(_{1}\) and \(\frac{5}{4}<\alpha <\frac{5}{2}\), we have \( s<\ \frac{3(5-2\alpha )}{2(2\alpha +3)}< \frac{3(\alpha +1)}{(8\alpha -1)} \) and thus, it follows from the lower inequality of (3)\(_{2}\) that \( \frac{\alpha (2s+3)}{10\alpha +1}<\frac{1}{3}+\frac{s}{9}\le \frac{1}{p}\), and so \(1-\frac{1}{p}<\frac{1}{r}\). Then, it follows from (A.2) that

$$\begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \nonumber \\&\quad \le C t^{- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \frac{6\alpha }{4\alpha + 1} ( \frac{1}{p} - \frac{s}{3} ) + 1 - \frac{3\alpha }{4\alpha + 1} - \frac{1}{q}\right) } \left\| u_0 \right\| _{L^2}^{2 - \frac{6\alpha }{4\alpha + 1}} \Vert u\Vert _{X^s_{p,q}} ^{\frac{6\alpha }{4\alpha + 1}}(t) R(t)^{-1} \tilde{J}\nonumber \\ \end{aligned}$$
(A.6)

where \(\tilde{J}:= \int _0^{\frac{t}{2}} R(\tau )^{-\frac{6\alpha }{4\alpha + 1}}d\tau \) and this can be rewritten as

$$\begin{aligned} \tilde{J} = |\varOmega |^{-1 + \frac{9}{4\alpha + 1} ( \frac{1}{q} - \frac{1}{p} )} \int _0^{\frac{|\varOmega |t}{2}} {\tilde{\tau }}^{- \frac{9}{4\alpha + 1} ( \frac{1}{q} - \frac{1}{p} )} (1 + \tilde{\tau })^{- \frac{6\alpha }{4\alpha + 1} ( 1 - \frac{2}{p} )} d\tilde{\tau }. \end{aligned}$$
(A.7)

Now, we claim that

$$\begin{aligned} 0< 1 - \frac{9}{4\alpha + 1}\left( \frac{1}{q} - \frac{1}{p} \right) < \frac{6\alpha }{4\alpha + 1} \left( 1 - \frac{2}{p} \right) . \end{aligned}$$
(A.8)

Indeed, by \(q>1\), \(\frac{1}{3}+\frac{s}{9}\le \frac{1}{p}\), \(s>0\), and \(\frac{5}{4}<\alpha \), the lower inequality of (A.8) holds true. The upper inequality of (A.8) holds true because \(\frac{1}{q} \ge \frac{1}{3} + \frac{2}{p} - \frac{s}{3}\) gives

$$\begin{aligned} \begin{aligned}&1 - \frac{9}{4\alpha + 1} \left( \frac{1}{q} - \frac{1}{p} \right) - \frac{6\alpha }{4\alpha + 1} \left( 1 - \frac{2}{p} \right) \\&\quad \le 1 - \frac{9}{4\alpha + 1} \left( \frac{1}{p} + \frac{1}{3} - \frac{s}{3} \right) - \frac{6\alpha }{4\alpha + 1} \left( 1 - \frac{2}{p} \right) \\&\quad = 1 - \frac{3}{4\alpha + 1} - \frac{6\alpha }{4\alpha + 1} + \frac{3s}{4\alpha + 1} + \frac{12\alpha - 9}{(4\alpha + 1)p}, \end{aligned} \end{aligned}$$

the upper inequality of (3)\(_2\) gives

$$\begin{aligned} \begin{aligned}&1 - \frac{3}{4\alpha + 1} - \frac{6\alpha }{4\alpha + 1} + \frac{3s}{4\alpha + 1} + \frac{12\alpha - 9}{(4\alpha + 1)p} \\&\quad < 1 - \frac{3}{4\alpha + 1} - \frac{6\alpha }{4\alpha + 1} + \frac{3s}{4\alpha + 1} + \frac{12\alpha - 9}{4\alpha + 1} \left( \frac{5}{12\alpha } + \frac{1}{6} - \frac{s}{6\alpha } \right) \\&\quad = 1 - \frac{3}{4\alpha + 1} - \frac{6\alpha }{4\alpha + 1} + \frac{(6\alpha + 9)s}{6\alpha (4\alpha + 1)} + \frac{12\alpha - 9}{4\alpha + 1} \left( \frac{5}{12\alpha } + \frac{1}{6} \right) , \end{aligned} \end{aligned}$$

and the upper inequality of (3)\(_1\) gives

$$\begin{aligned}&1 - \frac{3}{4\alpha + 1} - \frac{6\alpha }{4\alpha + 1} + \frac{(6\alpha + 9)s}{6\alpha (4\alpha + 1)} + \frac{12\alpha - 9}{4\alpha + 1} \left( \frac{5}{12\alpha } + \frac{1}{6} \right) \\&\quad < 1 - \frac{3}{4\alpha + 1} - \frac{6\alpha }{4\alpha + 1} + \frac{6\alpha + 9}{6\alpha (4\alpha + 1)} \left( \frac{3(5 - 2\alpha )}{2(2\alpha + 3)} \right) + \frac{12\alpha - 9}{4\alpha + 1} \left( \frac{5}{12\alpha } + \frac{1}{6} \right) = 0. \end{aligned}$$

By (A.8), the integral term in (A.7) is bounded and thus,

$$\begin{aligned} \tilde{J} \le C |\varOmega |^{-1 + \frac{9}{4\alpha + 1} ( \frac{1}{q} - \frac{1}{p} )}. \end{aligned}$$

Then, it follows from (A.6) that

$$\begin{aligned} \begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \\&\quad \le C t^{- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \frac{6\alpha }{4\alpha + 1} ( \frac{1}{p} - \frac{s}{3} ) + 1 - \frac{3\alpha }{4\alpha + 1} - \frac{1}{q}\right) } \\&\qquad \cdot |\varOmega |^{- 1 + \frac{9}{4\alpha + 1} ( \frac{1}{q} - \frac{1}{p} )} \left\| u_0 \right\| _{L^2}^{2 - \frac{6\alpha }{4\alpha + 1}} \Vert u\Vert _{X^s_{p,q}} ^{\frac{6\alpha }{4\alpha + 1}}(t) R(t)^{-1}. \end{aligned} \end{aligned}$$

Moreover, we see that

$$\begin{aligned} - \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \frac{6\alpha }{4\alpha + 1} \Big ( \frac{1}{p} - \frac{s}{3} \Big ) + 1 - \frac{3\alpha }{4\alpha + 1} - \frac{1}{q}\right) < 0 \end{aligned}$$

because \(\frac{1}{q} < 1\) and (3)\(_2\) implies

$$\begin{aligned} \begin{aligned}&- \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{3}{2\alpha } \left( \frac{6\alpha }{4\alpha + 1} \Big ( \frac{1}{p} - \frac{s}{3} \Big ) + 1 - \frac{3\alpha }{4\alpha + 1} - \frac{1}{q}\right) \\&\quad< - \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{9}{4\alpha + 1} \Big ( \frac{1}{p} - \frac{s}{3} \Big ) + \frac{9}{2(4\alpha + 1)} \\&\quad \le - \frac{1}{2\alpha } - \frac{s}{2\alpha } - \frac{9}{4\alpha + 1} \Big ( \frac{1}{3} - \frac{2s}{9} \Big )+ \frac{9}{2(4\alpha + 1)} \\&\quad = - \frac{1 + \alpha + s}{2\alpha (4\alpha + 1)} < 0. \end{aligned} \end{aligned}$$

Therefore, with \(t > 1\) we have

$$\begin{aligned}&\int ^{\frac{t}{2}}_0 \left\| T_{\varOmega }^{\alpha }(t - \tau ) {\mathbb {P}} \mathrm {div} \, (u \otimes u)(\tau ) \right\| _{\dot{H}^s_p}d\tau \\&\quad \le C |\varOmega |^{- 1 + \frac{9}{4\alpha + 1} ( \frac{1}{q} - \frac{1}{p} )} \left\| u_0 \right\| _{L^2}^{2 - \frac{6\alpha }{4\alpha + 1}} \Vert u\Vert _{X^s_{p,q}} ^{\frac{6\alpha }{4\alpha + 1}}(t) R(t)^{-1}. \end{aligned}$$

Hence, (48) is obtained. This completes the proof. \(\square \)

We close the appendix by giving a regularity criterion for (2). Using the estimates in the proof below we can deduce that the solution to (2) given by Theorem 1 is smooth for \(t>0\) .

Lemma 10

Let \(\alpha >\frac{1}{2}\), \(u_{0}\in H^{5\alpha }(\mathbb {R}^{3})\), and \(\mathrm {div}\, u_0 = 0\). Suppose that \((u,\pi )\) is a weak solution to (2) subject to the initial data \(u_{0}\), and satisfies

$$\begin{aligned} u\in L^{\sigma }(0,T;L^{r}(\mathbb {R}^{3})),\qquad \frac{3}{r}+\frac{2\alpha }{\sigma }\le 2\alpha -1,\quad \frac{3}{2\alpha -1}<r\le \infty . \end{aligned}$$
(A.9)

Then, \((u,\pi )\) is smooth for \(0<t\le T\).

Proof

We note that the classical solvability of (2) with \(\varOmega =0\) for \(\alpha \ge \frac{5}{4}\) was obtained by Lions [16] and its extension to the case of nonzero \(\varOmega \) is rather straightforward. We also note, for \(1\le \alpha \le \frac{3}{2}\), that the regularity criterion (A.9) can be found in [22]. Thus, it is sufficient to deal with the case \(\frac{1}{2}<\alpha <1\).

Let \(\frac{1}{2}<\alpha <1\). We only provide the estimate for \( u\in L^{\infty }(0,T; \dot{H}^{\alpha } )\cap L^{2}(0,T; \dot{H}^{2\alpha } ) \) because the higher order estimates \(u\in L^{\infty }(0,T; \dot{H}^{k\alpha })\cap L^{2}(0,T; \dot{H}^{(k+1)\alpha })\), \(k=2,3,4,5\) can be obtained in a similar way. We denote \(\varLambda \) as the \(\frac{1}{2}\) power of the negative Laplacian, i.e., \(\varLambda =(-\varDelta )^{\frac{1}{2}}\). Multiplying both sides of (2) by \(\varLambda ^{2\alpha } u\), integrating over \(\mathbb {R}^{3}\), and using Hölder’s inequality, we can compute

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert \varLambda ^{\alpha }u\Vert _{L^{2}}^{2}+\Vert \varLambda ^{2\alpha }u\Vert _{L^{2}}^{2}\le \Vert \varLambda ^{2\alpha }u\Vert _{L^{2}}\Vert u\Vert _{L^{r}}\Vert \nabla u\Vert _{L^{\frac{2r}{r-2}}}. \end{aligned}$$

Using Young’s inequality and the interpolation inequality

$$\begin{aligned} \Vert \nabla u\Vert _{L^{\frac{2r}{r-2}}}\le C\Vert \varLambda ^{\alpha }u\Vert _{L^{2}}^{1-\lambda }\Vert \varLambda ^{2\alpha }u\Vert _{L^{2}}^{\lambda },\qquad \lambda =\frac{1-\alpha +3/r}{\alpha }\in (0,1), \end{aligned}$$

we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert \varLambda ^{\alpha }u\Vert _{L^{2}}^{2}+\frac{1}{2}\Vert \varLambda ^{2\alpha }u\Vert _{L^{2}}^{2}\le C \Vert \varLambda ^{\alpha }u\Vert _{L^{2}}^{2}\Vert u\Vert _{L^{r}}^{2/(1-\lambda )}. \end{aligned}$$
(A.10)

Applying Grönwall’s inequality to (A.10), and using (A.9) with \(\frac{2\alpha }{2/(1-\lambda )}=2\alpha -1-\frac{3}{r}\), we see that \( u\in L^{\infty }(0,T; \dot{H}^{\alpha })\cap L^{2}(0,T; \dot{H}^{2\alpha })\). This completes the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., Kim, J. & Lee, J. Coriolis effect on temporal decay rates of global solutions to the fractional Navier–Stokes equations. Math. Ann. 383, 259–289 (2022). https://doi.org/10.1007/s00208-020-02122-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02122-1

Navigation