Skip to main content

Advertisement

Log in

Fine-scale temporal variation of intertidal marine fungal community structure: insights from an impacted Baja California sandy beach in Mexico

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Globally, marine sandy beaches face increasing anthropogenic pressures. Long-term maintenance of their functional capacities depends strongly on robust autochthonous biotic community baseline data. However, fine-scale temporal patterns remain poorly understood in human-impacted sites, limiting our knowledge of beach response to stressors. Marine arenicolous fungi represent a neglected group of endopsamon microorganisms (living within sandy sediments) that fulfills key ecological roles mainly as saprobes. Preliminary data suggests that this fungal group is threatened by anthropogenic disturbances in tourist beaches, yet knowledge on their ecological plasticity and fine-scale patterns is lacking. To address this knowledge gap, we investigated marine fungal community composition changes over a fine temporal scale (biweekly, over a four-month period) at an impacted Pacific tourist sandy beach, and explored associations between community composition and key environmental variables. We identified 17 taxa, within four ecological groups: strict marine arenicolous fungi (Arenariomyces majusculus, Corollospora gracilis, Corollospora maritima, Corollospora sp. 1 and 2), non-arenicolous marine fungi (Nia sp.), terrestrial borne opportunistic pathogens (Arthrographis kalrae, Parengyodontium album, Neocosmospora solani, Scopulariopsis sp., and Exophiala sp.), and facultative marine species (Aspergillus terreus and Penicillium sp.). In agreement with our hypothesis, minor fine temporal scale changes in community structure suggest arenicolous fungi persist on the beach as inoculum. Nevertheless, we detected changes in the intertidal fungal community structure in response to environmental variables, shown by the increase of terrestrial borne pathogenic species in the rainy season. Lastly, our data warn against extensive beach grooming, which may lead to the direct reduction of strict marine arenicolous fungal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Arnolds E (2001) The future of fungi in Europe: threats, conservation and management. In: Moore D, Nauta MM, Evans SE, Rotheroe M (eds) Fungal conservation: issues and solutions. Cambridge University Press, Cambridge, pp 64–80

    Chapter  Google Scholar 

  • Bascom W (1980) Waves and beaches. Anchor Press/Doubleday, New York

    Google Scholar 

  • Bayartogtokh B, Chatterjee T (2010) Oribatid mites from marine littoral and freshwater habitats in India with remarks on world species of Thalassozetes (Acari: Oribatida). Zool Stud 49:839–854

    Google Scholar 

  • Brown AC, Nordstorm K, McLachlan A, Jackson NL, Sherman DJ (2008) Sandy shores of the near future. In: Polunin NVC (ed) Aquatic ecosystems; trends and global prospects. Cambridge University Press, New York, pp 263–280

    Chapter  Google Scholar 

  • Cervantes O, Espejel I, Arellano E, Delhumeau S (2008) User’s perception as a tool to improve urban beach planning and management. Environ Manag 42:249–264. https://doi.org/10.1007/s00267-008-9104-8

    Article  Google Scholar 

  • Corte L, di Cagno R, Groenewald M, Roscini L, Colabella C, Gobbetti M, Cardinali G (2015) Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiol 48:206–215. https://doi.org/10.1016/j.fm.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson EY (1949) Contributions toward a marine flora of the Southern California Channel Islands, I-III. Allan Hancock Foundation Publications, California

    Google Scholar 

  • Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20. https://doi.org/10.3354/meps295001

    Article  Google Scholar 

  • Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan J, Jones A, Scapini F (2009) Threats to sandy beach ecosystems: a review. Estuar Coast Shelf Sci 81:1–12. https://doi.org/10.1016/j.ecss.2008.09.022

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dugan JE, Hubbard DM (2006) Ecological responses to coastal armouring on exposed sandy beaches. Shore Beach 74:10–16

    Google Scholar 

  • Dugan JE, Hubbard DM (2010) Loss of coastal strand habitat in southern California: the role of beach grooming. Estuaries Coast 33:67–77. https://doi.org/10.1007/s12237-009-9239-8

    Article  Google Scholar 

  • Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40. https://doi.org/10.1016/S0272-7714(03)00045-3

    Article  Google Scholar 

  • Dugan JE, Hubbard DM, Rodil I, Revell DL, Schroeter S (2008) Ecological effects of coastal armoring on sandy beaches. Mar Ecol 29:160–170. https://doi.org/10.1111/j.1439-0485.2008.00231.x

    Article  Google Scholar 

  • Embling CB, Illian J, Armstrong E, van der Kooij J, Sharples J, Camphuysen KC, Scott BE (2012) Investigating fine-scale spatio-temporal predator–prey patterns in dynamic marine ecosystems: a functional data analysis approach. J Appl Ecol 49:481–492

    Article  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194. https://doi.org/10.1101/gr.8.3.186

    Article  CAS  PubMed  Google Scholar 

  • Gessner RV (1977) Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia 69:477–491

    Article  Google Scholar 

  • González MC, Hanlin RT (2010) Potential use of marine arenicolous ascomycetes as bioindicators of ecosystem disturbance on sandy Cancun beaches: Corollospora maritima as a candidate species. Bot Mar 53:577–580. https://doi.org/10.1515/bot.2010.073

    Article  Google Scholar 

  • González MC, Herrera T, Ulloa M, Hanlin RT (1998) Abundance and diversity of microfungi in three coastal beaches of Mexico. Mycoscience 39:115–122. https://doi.org/10.1007/BF02464049

    Article  Google Scholar 

  • González MC, Hanlin RT, Ulloa M (2001) A checklist of higher marine fungi of Mexico. Mycotaxon 80:241–253

    Google Scholar 

  • Gordon D, Desmarais C, Green P (2001) Automated finishing with autofinish. Genome Res 11:614–625. https://doi.org/10.1101/gr.171401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

  • Hurst CJ (2019) Dirt and disease: the ecology of soil fungi and plant fungi that are infectious for vertebrates. In: Hurst CJ (ed) Understanding terrestrial microbial communities. Springer, Cham, pp 289–405

    Chapter  Google Scholar 

  • Hutchinson GE (1965) The ecological theater and the evolutionary play. Yale University Press, Conneticut

    Google Scholar 

  • Hyde KD, Sarma VV (2000) A pictorial key to higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach. Fungal Diversity Press, Hong Kong, pp 205–270

    Google Scholar 

  • Jiménez Pérez LC, Peralta FM, Fernández EN (1992) Efectos de las aguas residuales sobre la macrofauna bentónica de playas arenosas en la bahía de Todos Santos. Cienc Mar 18:35–44

    Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG, Puglisi MP (2006) Marine fungi from Florida. Fla Sci 69:157–164

    Google Scholar 

  • Jones A, Gladstone W, Hacking N (2004) Sandy-beach ecosystems and climate change: potential ecological consequences and management implications. In: The Second Decade - Coastal Planning and Management in Australia towards 2014 Proceedings of Coast to Coast 2004, Australia’s 6th National Coastal Management Conference, 2004 April 19-23, Hobart

  • Jones A, Gladstone W, Hacking N (2007) Australian sandy-beach ecosystems and climate change: ecology and management. Aust Zool 34:190–202. https://doi.org/10.7882/AZ.2007.018

    Article  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T et al (2019) An online resource for marine fungi. Fungal Divers 96:347–433

    Article  Google Scholar 

  • Kirk PW Jr (1983) Direct enumeration of marine arenicolous fungi. Mycologia 75:670–682. https://doi.org/10.1080/00275514.1983.12023736

    Article  Google Scholar 

  • Kohlmeyer J (1966) Ecological observations on arenicolous marine fungi. Z Allg Mikrobiol 6:95–106

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J (1983) Geography of marine fungi. Austral J Bot 13:67–76

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology–the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61. https://doi.org/10.1515/botm.1991.34.1.1

    Article  Google Scholar 

  • Komar PD (1998) Beach processes and sedimentation. Prentice-Hall, New Jersey

    Google Scholar 

  • Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  • Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334

    Article  Google Scholar 

  • Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963

    Article  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  • Li DM, Li RY, De Hoog GS, Sudhadham M, Wang DL (2011) Fatal Exophiala infections in China, with a report of seven cases. Mycoses 54:e136–e142. https://doi.org/10.1111/j.1439-0507.2010.01859.x

    Article  PubMed  Google Scholar 

  • Llewellyn PJ, Shackley SE (1997) The effects of mechanical beach-cleaning on invertebrate populations. Br Wildl 7:147–155

    Google Scholar 

  • Magan N, Aldred D (2008) Environmental fluxes and fungal interactions: maintaining a competitive edge. In: British mycological society symposia series. Academic Press, Vol. 27, pp. 19–35. https://doi.org/10.1016/S0275-0287(08)80044-6

  • Mason DC, Scott TR, Dance SL (2010) Remote sensing of intertidal morphological change in Morecambe Bay, UK, between 1991 and 2007. Estuar Coast Shelf Sci 87:487–496

    Article  Google Scholar 

  • McGinnis MR (1980) Laboratory handbook of medical mycology. Academic Press, New York

    Google Scholar 

  • McLachlan A, Brown AC (2006) The ecology of sandy shores. Academic Press, Massachusetts

    Google Scholar 

  • McLachlan A, Defeo O, Jaramillo E, Short AD (2013) Sandy beach conservation and recreation: guidelines for optimising management strategies for multi-purpose use. Ocean Coast Manag 71:256–268. https://doi.org/10.1016/j.ocecoaman.2012.10.005

    Article  Google Scholar 

  • Millberg H, Boberg J, Stenlid J (2015) Changes in fungal community of Scots pine (Pinus sylvestris) needles along a latitudinal gradient in Sweden. Fungal Ecol 17:126–139. https://doi.org/10.1016/j.funeco.2015.05.012

    Article  Google Scholar 

  • Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206. https://doi.org/10.1016/S0022-0981(96)02643-3

    Article  Google Scholar 

  • Newell SY, Porter D (2000) Microbial secondary production from salt marsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp 159–185

    Google Scholar 

  • Nordstrom KF (2000) Beaches and dunes on developed coasts. Cambridge University Press, New York

    Book  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019). vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan Accessed 11 November 2019

  • Ortega-Morales BO, Chan-Bacab MJ, De la Rosa SDC, Camacho-Chab JC (2010) Valuable processes and products from marine intertidal microbial communities. Curr Opin Biotechnol 21:346–352

    Article  CAS  PubMed  Google Scholar 

  • Panebianco C, Tam WY, Jones EBG (2002) The effect of pre-inoculation of balsa wood by selected marine fungi and their effect on subsequent colonisation in the sea. Fungal Divers 10:77–88

    Google Scholar 

  • Peršoh D, Melcher M, Flessa F, Rambold G (2010) First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol 114:585–596. https://doi.org/10.1016/j.funbio.2010.04.009

    Article  PubMed  Google Scholar 

  • Prasannarai K, Sridhar KR (2003) Fungal assemblage and diversity on periodically sampled intertidal woody litter. Indian J Mar Sci 32:329–333

    Google Scholar 

  • Prasannarai K, Ananda K, Sridhar KR (1999) Intertidal fungi in Mangalore Harbour, Southern India. Bot Mar 42:117–122. https://doi.org/10.1515/BOT.1999.014

  • R Development Core Team (2015) R: a language and environment for statistical computing. Vienna, Austria. http://cran.r-project.org/. Accessed 11 November 2019

  • Rambaut A, Drummond AJ (2018) FigTree v1. 4.4. Institute of Evolutionary Biology. University of Edinburgh, Edinburgh

  • Rambaut A, Drummond AJ, Xie D, Baele G and Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. Syy032

  • Rees G, Jones EBG (1985) The fungi of a coastal sand dune system. Bot Mar 28:213–220

    Article  Google Scholar 

  • Rees G, Johnson RG, Jones EBG (1979) Lignicolous marine fungi from Danish sand dunes. Trans Br Mycol Soc 72:99–106

    Article  Google Scholar 

  • Rivera-Arriaga E, Villalobos G (2001) The coast of Mexico: approaches for its management. Ocean Coast Manag 44:729–756. https://doi.org/10.1016/S0964-5691(01)00078-3

    Article  Google Scholar 

  • Roberts CM, Hawkins JP (1999) Extinction risk in the sea. Trends Ecol Evol 14:241–246. https://doi.org/10.1016/S0169-5347(98)01584-5

    Article  CAS  PubMed  Google Scholar 

  • Rohrbough JD, Koehr JE, Thompson WC (1964) Quasi-weekly and daily profile changes on a distinctive sand beach. Coastal Eng Proc 1:249–258

    Article  Google Scholar 

  • Rosas R, Espejel I, Cervantes O, Ferrer A (2013) La percepción de la playa como un elemento importante para la certificación de playas limpias. Ejemplo de Ensenada, Baja California, México. In: Botero C, DJ Correa-Guia, Vessuri H, Cuétara L, Márquez-Ortíz LE, Geerders P, Márquez-Díaz LA (eds) Turismo Sostenible. Un debate para el futuro multigeneracional, Universidad de Carabobo, Venezuela, pp. 166–192

  • Salamone AL, Robicheau BM, Walker AK (2016) Fungal diversity of marine biofilms on artificial reefs in the north-central Gulf of Mexico. Bot Mar 59:291–305. https://doi.org/10.1515/bot-2016-0032

  • Schlacher TA, Schoeman DS, Lastra M, Jones A, Dugan J, Scapini F, McLachlan A (2006) Neglected ecosystems bear the brunt of change. Ethol Ecol Evol 18:349–351. https://doi.org/10.1080/08927014.2006.9522701

    Article  Google Scholar 

  • Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, McLachlan A (2008) Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar Ecol 29:70–90. https://doi.org/10.1111/j.1439-0485.2007.00204.x

    Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz ML (2005) Encyclopedia of coastal science. Springer, Dordrecht

    Book  Google Scholar 

  • Secretaría de Marina (1974) Estudio geográfico de la región de Ensenada, B.C. Dirección General de Oceanografía y Señalamiento Marítimo, Mexico

    Google Scholar 

  • Short AD (1999) Handbook of beach and shoreface morphodynamics. John Wiley & Sons, New York

    Google Scholar 

  • Silva-Iñiguez L, Fischer DW (2003) Quantification and classification of marine litter on the municipal beach of Ensenada, Baja California, Mexico. Ma Pollut Bull 23:437–441. https://doi.org/10.1016/s0025-326x(02)00216-3

  • Solo-Gabriele HM, Harwood VJ, Kay D et al (2016) Beach sand and the potential for infectious disease transmission: observations and recommendations. J Mar Biol Assoc UK 96:101–120. https://doi.org/10.1017/S0025315415000843

    Article  Google Scholar 

  • Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016. https://doi.org/10.1093/ve/vey016

  • Thrush SF, Hewitt JE, Gibbs M, Lundquist C, Norkko A (2006) Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9:1029–1040. https://doi.org/10.1007/s10021-005-0068-8

    Article  Google Scholar 

  • Urban DL, Acevedo MF, Garman SL (1999) Scaling fine-scale processes to large-scale patterns using models derived from models: meta-models. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, pp 70–98

    Google Scholar 

  • Velez P, González MC, Rosique-Gil E, Cifuentes J, Reyes-Montes MR, Capello-Garcías S, Hanlin R (2013) Community structure and diversity of marine ascomycetes from coastal beaches of the southern Gulf of Mexico. Fungal Ecol 6:513–521. https://doi.org/10.1016/j.funeco.2013.10.002

    Article  Google Scholar 

  • Velez P, Alejandri-Ramírez ND, González MC, Estrada K, Sanchez-Flores A, Dinkova TD (2015a) Comparative transcriptome analysis of the cosmopolitan marine fungus Corollospora maritima under two physiological conditions. G3: Genes Genom Genet 5:1805–1814. https://doi.org/10.1534/g3.115.019620

    Article  CAS  Google Scholar 

  • Velez P, Gonzalez MC, Capello-García S, Rosique-Gil E, Hanlin RT (2015b) Diversity of marine ascomycetes from the disturbed sandy beaches of Tabasco, Mexico. J Mar Biol Assoc UK 95:897–903. https://doi.org/10.1017/S0025315414002112

    Article  Google Scholar 

  • Velez P, Gasca-Pineda J, Nakagiri A, Hanlin RT, González MC (2016) Genetic diversity and population structure of Corollospora maritima sensu lato: new insights from population genetics. Bot Mar 59:307–320. https://doi.org/10.1515/bot-2016-0058

    Article  Google Scholar 

  • Volkmann-Kohlmeyer B, Kohlmeyer J (1993) Biogeographic observations on Pacific marine fungi. Mycologia 85:337–346. https://doi.org/10.1080/00275514.1993.12026282

    Article  Google Scholar 

  • Walker AK, Velez P, González MC (2017) Marine fungi. eLS/Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0027209

    Book  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand J, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp 315–322

    Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397. https://doi.org/10.2307/2389612

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, McLauchlan KK, Davies TJ (2014) Temporal ecology in the Anthropocene. Ecol Lett 17:1365–1379. https://doi.org/10.1111/ele.12353

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941. https://doi.org/10.1128/AEM.01158-07

  • Zvereva LV (2009) Arenicolous mycelial fungi from the littoral of the Vostok Bay (Peter the Great Bay, the Sea of Japan). Microbiology 78:498–501. https://doi.org/10.1134/S0026261709040146

Download references

Acknowledgments

We sincerely thank lifeguards from the Asociación de Salvavidas y Rescate del estado de Baja California, A.C., especially José Manuel Morales for their excellent collaboration with beach photographic record. We are grateful to Dr. Lidia Irene Cabrera Martínez, Laboratorio de Sistemática Molecular del Departamento de Botánica, Dr. Laura Marquez and M. Sc. Nelly Lopez, Laboratorio Nacional de Biodiversidad, Instituto de Biologia, Universidad Nacional Autónoma de México; as well as Constanza Marini-Macouzet for technical support in the laboratory. We also thank Dr. Edgar Pavía and Met. Santiago Higareda, CICESE Weather Station, for kindly providing environmental data. This paper was written during a research stay of PV at the National Museum of Nature and Science, Tsukuba, with support of FY2018 JSPS Invitational Fellowship for Research in Japan (ID No. S18062). The manuscript was improved by comments from the editor and anonymous reviewers.

Funding

This work was funded by the Instituto de Biología, Universidad Nacional Autónoma de México (operating budget), and the Natural Sciences and Engineering Research Council, Discovery Grant (NSERC—2017-04325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Velez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No animal testing was performed during this study.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable. The study is compliant with CBD and Nagoya protocols.

Data availability

All data generated during this study are included in this published article. Information regarding sequences generated out of the present study has been deposited in NCBI, GenBank.

Author contribution

AN, JGP, and PV conceived and designed the research. JGP and PV collected the material. AB, AKW, DD, and PV conducted laboratory work. AKW and PV contributed with reagents and obtained funding. JGP and PV analyzed the data. MCG was in charge of digital imaging and photo editing of fungal specimens. PV wrote the manuscript. All authors contributed with the discussion of results. All authors read and approved the manuscript.

Additional information

Communicated by B. Beszteri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 58 kb)

ESM 2

(TXT 843 bytes)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velez, P., Walker, A.K., Gasca-Pineda, J. et al. Fine-scale temporal variation of intertidal marine fungal community structure: insights from an impacted Baja California sandy beach in Mexico. Mar. Biodivers. 51, 6 (2021). https://doi.org/10.1007/s12526-020-01148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01148-7

Keywords

Navigation