Skip to main content
Log in

Freeze Dried Biodegradable Polycaprolactone/Chitosan/Gelatin Porous Scaffolds for Bone Substitute Applications

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In current work, the porous 3D bone substitute scaffolds based on the chitosan, gelatin and polycaprolactone using freeze drying technique are introduced. SEM images showed that all the scaffolds had porous structures with average pore diameter size of 23–183 µm. The results of FTIR demonstrated the successful blending of scaffolds. Also, the compression test results determined that the presence of polycaprolactone effectively improved the mechanical properties of the chitosan/gelatin/polycaprolactone scaffolds, having the highest strength, i.e. 24.5 MPa and highest modulus, i.e. 3.86 MPa. The degradation behavior obtained under lysozyme/PBS solutions revealed that the chitosan/gelatin scaffold had a faster degradation rate rather than other scaffolds. MTT assay as well as cell attachment analysis confirmed the appropriate cell viability and cell adhesion on the scaffolds. Taken together, the scaffolds developed in this study may find potential application in bone substitution applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hajizadeh, S. Aziziaπ, S. Tajvar, and M. Solaymanifar, Nano/Micro Structured Scaffolds in Tissue Engineering: From Vascularization Viewpoint, Amirkabir University of Technology (Tehran Polytechnic), 1st ed., 1395.

  2. R. C. Dutta, M. Dey, A. K. Dutta, and B. Basu, Biotechnol. Adv., 35, 240 (2017).

    Article  CAS  Google Scholar 

  3. L. H. Chong, N. Z. Zarith, and N. Sultana, Poly(Caprolactone)/Chitosan-based Scaffold using Freeze Drying Technique for Bone Tissue Engineering Application, 10th Asian Control Conference (ASCC), 2015.

  4. J.-B. Julla, R. Ballaire, T. Ejlalmanesh, J.-F. Gautier, N. Venteclef, and F. Alzaid, in Lipid-Activated Nuclear Receptors, Methods in Molecular Biology, Humana Press, New York, 2018, Vol. 1951, pp 33–48.

    Google Scholar 

  5. K. Saeed and S.-Y. Park, Iranian J. Chem. Chem. Eng., 29, 77 (2010).

    Google Scholar 

  6. K. Maji, S. Dasgupta, K. Pramanik and A. Bissoyi, Int. J. Biomater., 2016, 9825659 (2016).

    Article  Google Scholar 

  7. A. Sarasam and S. V. Madihally, Biomaterials, 26, 5500 (2005).

    Article  CAS  Google Scholar 

  8. M. Bohner and J. Lemaitre, Biomaterials, 30, 2175 (2009).

    Article  CAS  Google Scholar 

  9. H. Pan, X. Zhao, B. W. Darvell, and W. W. Lu, Acta Biomater., 6, 4181 (2010).

    Article  CAS  Google Scholar 

  10. A. R. Naqshbandi, I. Sopyan, and Gunawan, Recent Patents Mater. Sci., 6, 238 (2013).

    Article  CAS  Google Scholar 

  11. S. Sánchez-Salcedo, D. Arcos, and M. Vallet-Regí, Key Eng. Mater., 2, 19 (2008).

    Article  Google Scholar 

  12. S. Gautam, C.-F. Chou, A. K. Dinda, P. D. Potdar, and N. C. Mishra, J. Mater. Sci., 49, 1076 (2014).

    Article  CAS  Google Scholar 

  13. E. Bolaina-Lorenzo, C. Martínez-Ramos, M. Monleón-Pradas, W. Herrera-Kao, J. V Cauich-Rodríguez, and J. M Cervantes-Uc, Biomed. Mater., 12, 015008 (2017).

    Article  Google Scholar 

  14. L. Kundanati, S. K. Singh, B. B. Mandal, T. G. Murthy, N. Gundiah, and N. M. Pugno, Int. J. Mol. Sci., 17, 238 (2016).

    Article  Google Scholar 

  15. S. Moeini, M. R. Mohammadi, and A. Simchi, Bioact. Mater., 2, 1 (2017).

    Article  Google Scholar 

  16. K. Maji, S. Dasgupta, K. Pramanik, and A. Bissoyi, Mater. Sci. Eng. C, 86, 83 (2018).

    Article  CAS  Google Scholar 

  17. K. Maji, S. Dasgupta, B. Kundu, and A. Bissoyi, J.Biomater. Sci., Polym. Ed., 26, 1190 (2015).

    Article  CAS  Google Scholar 

  18. S. Mohamed and B. H. Shamaz, Int. J. Dent. Oral Health, 1, 15 (2015).

    Google Scholar 

  19. T. Niemelä and M. Kellomäki, in Bioactive Glasses, Woodhead Publishing, Cambridge, 2011, pp 227–245.

    Book  Google Scholar 

  20. I. Vroman and L. Tighzert, Materials, 2, 307 (2009).

    Article  CAS  Google Scholar 

  21. A. Banerjee, K. Chatterjee, and G. Madras, Mater. Sci. Technol., 30, 567 (2014).

    Article  CAS  Google Scholar 

  22. F. F. Azhar, A. Olad, and R. Salehi, Des. Monomers Polym., 17, 654 (2014).

    Article  Google Scholar 

  23. E. Díaz, I. Sandonis, and M. B. Valle, J. Nanomater., 2014, 1 (2014).

    Article  Google Scholar 

  24. M. Peter, N. S. Binulal, S. V. Nair, N. Selvamurugan, H. Tamura, and R. Jayakumar, Chem. Eng. J., 158, 353 (2010).

    Article  CAS  Google Scholar 

  25. G. S. Kozehkonan, M. Salehi, S. Farzamfar, H. Ghanbari, M. Adabi, and A. Amani, Nanomedicine J., 6, 311 (2019).

    CAS  Google Scholar 

  26. N. Thuaksuban, T. Nuntanaranont, W. Pattanachot, S. Suttapreyasri, and L. K. Cheung, Biomed. Mater., 6, 015009 (2011).

    Article  Google Scholar 

  27. J. Pourahmad and A. Salimi, Iranian J. Pharm. Res., 14, 679 (2015).

    CAS  Google Scholar 

  28. G. M. Şerban, I. B. Mănescu, D. R. Manu, and M. Dobreanu, Acta Medica Marisiensis, 64, 83 (2018).

    Article  Google Scholar 

  29. M. PULAT, The Eurasia Proceedings of Educational & Social Sciences (EPESS), 6, 111 (2019).

    Google Scholar 

  30. M. Peter, N. Ganesh, N. Selvamurugan, S. V. Nair, T. Furuike, H. Tamura, and R. Jayakumar, Carbohydr. Polym., 80, 687 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Esfarayen University of Technology (EUT) and Sadjad University of Technology for all supports throughout this cooperative project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Esmaeilzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghbin, M., Esmaeilzadeh, J. & Kahrobaee, S. Freeze Dried Biodegradable Polycaprolactone/Chitosan/Gelatin Porous Scaffolds for Bone Substitute Applications. Macromol. Res. 28 (Suppl 1), 1232–1240 (2020). https://doi.org/10.1007/s13233-020-8170-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8170-5

Keywords

Navigation