Skip to main content
Log in

Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The cellular cytoskeleton consisting of microtubules, intermediate filaments and the actin filaments is a dynamic structure providing shape and structural stability to cells. Particularly, the actin cytoskeleton formed by a combination of polymerized actin molecules and several other actin binding proteins including myosin is key to sensing and development of mechanical forces in cells. Given this and other features, the actin cytoskeleton has been implicated in a variety of cellular process including cellular motility and migration, cytokinesis, phagocytosis, cytoplasmic streaming, organelle transport, cellular transformation and metastasis, cellular metabolism, cell–matrix adhesion, and cell–cell adhesion. The latter is mediated by E-cadherin in the epithelial tissue and is fundamental to tissue morphogenesis and normal development. Here we discuss the role of the actin cytoskeleton in the assembly and maintenance of E-cadherin-based cell–cell adhesion through the formation of cellular appendages such as filopodia and lamellipodia and thus, impinging on one of the fundamental features of multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Skruber K, Read TA, Vitriol EA (2018) Reconsidering an active role for G-actin in cytoskeletal regulation. J Cell Sci 131

  2. Oda T, Iwasa M, Aihara T, Maeda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445

    Article  CAS  Google Scholar 

  3. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94:235–263

    Article  CAS  Google Scholar 

  4. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  Google Scholar 

  5. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773:642–652

    Article  CAS  Google Scholar 

  6. Dekraker C, Boucher E, Mandato CA (2018) Regulation and assembly of actomyosin contractile rings in cytokinesis and cell repair. Anat Rec (Hoboken) 301:2051–2066

    Article  CAS  Google Scholar 

  7. May RC, Machesky LM (2001) Phagocytosis and the actin cytoskeleton. J Cell Sci 114:1061–1077

    Article  CAS  Google Scholar 

  8. Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12:57–62

    Article  CAS  Google Scholar 

  9. Button E, Shapland C, Lawson D (1995) Actin, its associated proteins and metastasis. Cell Motil Cytoskeleton 30:247–251

    Article  CAS  Google Scholar 

  10. Fernie AR, Zhang Y, Sampathkumar A (2020) Cytoskeleton architecture regulates glycolysis coupling cellular metabolism to mechanical cues. Trends Biochem Sci 45:637–638

    Article  CAS  Google Scholar 

  11. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643

    Article  CAS  Google Scholar 

  12. Sept D, McCammon JA (2001) Thermodynamics and kinetics of actin filament nucleation. Biophys J 81:667–674

    Article  CAS  Google Scholar 

  13. Xue B, Robinson RC (2013) Guardians of the actin monomer. Eur J Cell Biol 92:316–332

    Article  CAS  Google Scholar 

  14. Quinlan ME, Kerkhoff E (2008) Actin nucleation: bacteria get in-Spired. Nat Cell Biol 10:13–15

    Article  CAS  Google Scholar 

  15. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  CAS  Google Scholar 

  16. Boczkowska M, Rebowski G, Kast DJ, Dominguez R (2014) Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs. Nat Commun 5:3308

    Article  Google Scholar 

  17. Rotty JD, Wu C, Bear JE (2013) New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol 14:7–12

    Article  CAS  Google Scholar 

  18. Pruyne D et al (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615

    Article  CAS  Google Scholar 

  19. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4:626–631

    Article  CAS  Google Scholar 

  20. Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila Spire is an actin nucleation factor. Nature 433:382–388

    Article  CAS  Google Scholar 

  21. Ahuja R et al (2007) Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131:337–350

    Article  CAS  Google Scholar 

  22. Chereau D et al (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320:239–243

    Article  CAS  Google Scholar 

  23. Fowler VM, Dominguez R (2017) Tropomodulins and leiomodins: actin pointed end caps and nucleators in muscles. Biophys J 112:1742–1760

    Article  CAS  Google Scholar 

  24. Green KJ, Getsios S, Troyanovsky S, Godsel LM (2010) Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2:a000125

    Article  Google Scholar 

  25. Fujii T, Namba K (2017) Structure of actomyosin rigour complex at 52 A resolution and insights into the ATPase cycle mechanism. Nat Commun 8:13969

    Article  CAS  Google Scholar 

  26. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  CAS  Google Scholar 

  27. Ladoux B, Mege RM (2017) Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 18:743–757

    Article  CAS  Google Scholar 

  28. Munjal A, Lecuit T (2014) Actomyosin networks and tissue morphogenesis. Development 141:1789–1793

    Article  CAS  Google Scholar 

  29. Shutova M, Yang C, Vasiliev JM, Svitkina T (2012) Functions of nonmuscle myosin II in assembly of the cellular contractile system. PLoS ONE 7:e40814

    Article  CAS  Google Scholar 

  30. Lehtimaki J, Hakala M, Lappalainen P (2017) Actin filament structures in migrating cells. Handb Exp Pharmacol 235:123–152

    Article  CAS  Google Scholar 

  31. Suraneni P et al (2012) The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol 197:239–251

    Article  CAS  Google Scholar 

  32. Wu C et al (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973–987

    Article  CAS  Google Scholar 

  33. Steffen A et al (2013) Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J Cell Sci 126:4572–4588

    CAS  Google Scholar 

  34. Steffen A, Koestler SA, Rottner K (2014) Requirements for and consequences of Rac-dependent protrusion. Eur J Cell Biol 93:184–193

    Article  CAS  Google Scholar 

  35. Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18:4–10

    Article  CAS  Google Scholar 

  36. Mejillano MR et al (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118:363–373

    Article  CAS  Google Scholar 

  37. Iwasa JH, Mullins RD (2007) Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 17:395–406

    Article  CAS  Google Scholar 

  38. Lai FP et al (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27:982–992

    Article  CAS  Google Scholar 

  39. Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803:191–200

    Article  CAS  Google Scholar 

  40. Jaiswal R et al (2013) The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol 23:1373–1379

    Article  CAS  Google Scholar 

  41. Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106

    Article  CAS  Google Scholar 

  42. Breitsprecher D et al (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124:3305–3318

    Article  CAS  Google Scholar 

  43. Svitkina TM et al (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421

    Article  CAS  Google Scholar 

  44. Bohil AB, Robertson BW, Cheney RE (2006) Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 103:12411–12416

    Article  CAS  Google Scholar 

  45. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  Google Scholar 

  46. Yamada S, Nelson WJ (2007) Synapses: sites of cell recognition, adhesion, and functional specification. Annu Rev Biochem 76:267–294

    Article  CAS  Google Scholar 

  47. Nelson WJ (2008) Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 36:149–155

    Article  CAS  Google Scholar 

  48. Biswas KH, Zaidel-Bar R (2017) Early events in the assembly of E-cadherin adhesions. Exp Cell Res 358:14–19

    Article  CAS  Google Scholar 

  49. Malinova TS, Huveneers S (2018) Sensing of cytoskeletal forces by asymmetric adherens junctions. Trends Cell Biol 28:328–341

    Article  CAS  Google Scholar 

  50. Maitre JL, Heisenberg CP (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626-633

    Article  CAS  Google Scholar 

  51. Benham-Pyle BW, Pruitt BL, Nelson WJ (2015) Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science 348:1024–1027.

  52. Mendonsa AM, Na TY, Gumbiner BM (2018) E-cadherin in contact inhibition and cancer. Oncogene 37:4769–4780

    Article  CAS  Google Scholar 

  53. Rao MV, Zaidel-Bar R (2016) Formin-mediated actin polymerization at cell-cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair. Mol Biol Cell 27:2844–2856

    Article  CAS  Google Scholar 

  54. Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions & adherens junctions. Exp Cell Res 358:39–44

    Article  CAS  Google Scholar 

  55. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514

    Article  CAS  Google Scholar 

  56. Vasioukhin V (2012) Adherens junctions and cancer. Sub-Cellular Biochem 60:379–414

    Article  CAS  Google Scholar 

  57. van Roy F (2014) Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14:121–134

    Article  Google Scholar 

  58. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ (2012) E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta 1826:23–31

    CAS  Google Scholar 

  59. Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22:299–310

    Article  CAS  Google Scholar 

  60. Haussinger D et al (2004) Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J 23:1699–1708

    Article  Google Scholar 

  61. Li Y et al (2013) Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion. Proc Natl Acad Sci USA 110:16462–16467

    Article  CAS  Google Scholar 

  62. Harrison OJ et al (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17:348–357

    Article  CAS  Google Scholar 

  63. Pertz O et al (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18:1738–1747

    Article  CAS  Google Scholar 

  64. Hong S, Troyanovsky RB, Troyanovsky SM (2011) Cadherin exits the junction by switching its adhesive bond. J Cell Biol 192:1073–1083

    Article  CAS  Google Scholar 

  65. Boggon TJ et al (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313

    Article  CAS  Google Scholar 

  66. Parisini E, Higgins JM, Liu JH, Brenner MB, Wang JH (2007) The crystal structure of human E-cadherin domains 1 and 2, and comparison with other cadherins in the context of adhesion mechanism. J Mol Biol 373:401–411

    Article  CAS  Google Scholar 

  67. Shapiro L et al (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337

    Article  CAS  Google Scholar 

  68. Harrison OJ et al (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256

    Article  CAS  Google Scholar 

  69. Bunse S et al (2013) Role of N-cadherin cis and trans interfaces in the dynamics of adherens junctions in living cells. PLoS ONE 8:e81517

    Article  Google Scholar 

  70. Haussinger D et al (2002) Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J Mol Biol 324:823–839

    Article  CAS  Google Scholar 

  71. Wu Y et al (2010) Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proc Natl Acad Sci U S A 107:17592–17597

    Article  CAS  Google Scholar 

  72. Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475:510–513

    Article  CAS  Google Scholar 

  73. Borghi N et al (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci USA 109:12568–12573

    Article  CAS  Google Scholar 

  74. Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S (2012) Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci USA 109:18815–18820

    Article  CAS  Google Scholar 

  75. Huber O, Kemler R, Langosch D (1999) Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. J Cell Sci 112(Pt 23):4415–4423

    Article  CAS  Google Scholar 

  76. McEwen AE, Escobar DE, Gottardi CJ (2012) Signaling from the adherens junction. Sub-cellular biochemistry 60:171–196

    Article  CAS  Google Scholar 

  77. Guo Z et al. (2014) E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal 7:rs7.

  78. Zaidel-Bar R (2013) Cadherin adhesome at a glance. J Cell Sci 126:373–378

    Article  CAS  Google Scholar 

  79. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  CAS  Google Scholar 

  80. Biswas KH, Hartman KL, Zaidel-Bar R, Groves JT (2016) Sustained alpha-catenin activation at E-cadherin junctions in the absence of mechanical force. Biophys J 111:1044–1052

    Article  CAS  Google Scholar 

  81. Biswas KH (2018) Regulation of α-catenin conformation at cadherin adhesions. J Biomech Sci Engg 13:17–00699

    Google Scholar 

  82. le Duc Q et al (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189:1107–1115

    Article  Google Scholar 

  83. Yao M et al (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5:4525

    Article  CAS  Google Scholar 

  84. Hirokawa N, Tilney LG (1982) Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 95:249–261

    Article  CAS  Google Scholar 

  85. Yonemura S (2011) Cadherin-actin interactions at adherens junctions. Curr Opin Cell Biol 23:515–522

    Article  CAS  Google Scholar 

  86. Wu Y, Kanchanawong P, Zaidel-Bar R (2015) Actin-delimited adhesion-independent clustering of e-cadherin forms the nanoscale building blocks of adherens junctions. Dev Cell 32:139–154

    Article  CAS  Google Scholar 

  87. Truong Quang BA, Mani M, Markova O, Lecuit T, Lenne PF (2013) Principles of E-cadherin supramolecular organization in vivo. Curr Biol 23:2197–2207

    Article  CAS  Google Scholar 

  88. Biswas KH et al (2015) E-cadherin junction formation involves an active kinetic nucleation process. Proc Natl Acad Sci USA 112:10932–10937

    Article  CAS  Google Scholar 

  89. Biswas KH, Groves JT (2019) Hybrid Live Cell-Supported Membrane Interfaces for Signaling Studies. Annu Rev Biophys 48:537–562

    Article  CAS  Google Scholar 

  90. Biswas KH (2020) Molecular mobility-mediated regulation of E-cadherin adhesion. Trends Biochem Sci 45:163–173

    Article  CAS  Google Scholar 

  91. Biswas KH, Zhongwen C, Dubey AK, Oh D, Groves JT (2018) Multicomponent supported membrane microarray for monitoring spatially resolved cellular signaling reactions. Adv Biosyst 2:1800015

    Article  Google Scholar 

  92. Biswas KH, Groves JT (2018) in Physics of Biological Membranes (eds Patricia Bassereau & Pierre Sens) 537–560 (Springer International Publishing, 2018).

  93. Biswas KH, Cho NJ, Groves JT (2018) Fabrication of multicomponent, spatially segregated DNA and protein functionalized supported membrane microarray. Langmuir 34:9781–9788

    Article  CAS  Google Scholar 

  94. Padmanabhan A, Ong HT, Zaidel-Bar R (2016) Non-junctional E-Cadherin Clusters Regulate the Actomyosin Cortex in the C. elegans Zygote. Current Biology

  95. Liu Z et al (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA 107:9944–9949

    Article  CAS  Google Scholar 

  96. McNeill H, Ryan TA, Smith SJ, Nelson WJ (1993) Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J Cell Biol 120:1217–1226

    Article  CAS  Google Scholar 

  97. Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    Article  CAS  Google Scholar 

  98. Raich WB, Agbunag C, Hardin J (1999) Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr Biol 9:1139–1146

    Article  CAS  Google Scholar 

  99. Tanaka-Matakatsu M, Uemura T, Oda H, Takeichi M, Hayashi S (1996) Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development 122:3697–3705

    Article  CAS  Google Scholar 

  100. Fierro-Gonzalez JC, White MD, Silva JC, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433

    Article  CAS  Google Scholar 

  101. Kuroda S et al (1997) Regulation of cell-cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases. Biochem Biophys Res Commun 240:430–435

    Article  CAS  Google Scholar 

  102. Kim SH, Li Z, Sacks DB (2000) E-cadherin-mediated cell-cell attachment activates Cdc42. J Biol Chem 275:36999–37005

    Article  CAS  Google Scholar 

  103. Gauvin TJ, Young LE, Higgs HN (2015) The formin FMNL3 assembles plasma membrane protrusions that participate in cell-cell adhesion. Mol Biol Cell 26:467–477

    Article  Google Scholar 

  104. Yamada S, Nelson WJ (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178:517–527

    Article  CAS  Google Scholar 

  105. Yamazaki D, Oikawa T, Takenawa T (2007) Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion. J Cell Sci 120:86–100

    Article  CAS  Google Scholar 

  106. Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21–30

    Article  CAS  Google Scholar 

  107. Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS (2002) Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 12:379–382

    Article  CAS  Google Scholar 

  108. Verma S et al (2004) Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J Biol Chem 279:34062–34070

    Article  CAS  Google Scholar 

  109. Braga VM, Machesky LM, Hall A, Hotchin NA (1997) The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137:1421–1431

    Article  CAS  Google Scholar 

  110. Braga VM, Del Maschio A, Machesky L, Dejana E (1999) Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22

    Article  CAS  Google Scholar 

  111. Gavard J et al (2004) Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J Cell Sci 117:257–270

    Article  CAS  Google Scholar 

  112. Collins C, Denisin AK, Pruitt BL, Nelson WJ (2017) Changes in E-cadherin rigidity sensing regulate cell adhesion. Proc Natl Acad Sci USA 114:E5835–E5844

    Article  CAS  Google Scholar 

  113. Buckley CD et al (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:1254211

    Article  Google Scholar 

  114. Kim TJ et al (2015) Dynamic visualization of alpha-catenin reveals rapid, reversible conformation switching between tension states. Curr Biol 25:218–224

    Article  CAS  Google Scholar 

  115. Escobar DJ et al (2015) alpha-Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. J Cell Sci 128:1150–1165

    CAS  Google Scholar 

  116. Nieset JE et al (1997) Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J Cell Sci 110(Pt 8):1013–1022

    Article  CAS  Google Scholar 

  117. Biswas KH (2017) Allosteric regulation of proteins. Resonance 22:37–50

    Article  CAS  Google Scholar 

  118. Biswas KH, Badireddy S, Rajendran A, Anand GS, Visweswariah SS (2015) Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2. PeerJ 3:e882

    Article  Google Scholar 

  119. Biswas KH, Visweswariah SS (2011) Distinct allostery induced in the cyclic GMP-binding, cyclic GMP-specific phosphodiesterase (PDE5) by cyclic GMP, sildenafil, and metal ions. J Biol Chem 286:8545–8554

    Article  CAS  Google Scholar 

  120. Biswas KH, Sopory S, Visweswariah SS (2008) The GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) is a sensor and a sink for cGMP. Biochemistry 47:3534–3543

    Article  CAS  Google Scholar 

  121. Cavey M, Lecuit T (2009) Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb Perspect Biol 1:a002998

    Article  Google Scholar 

  122. Li JXH, Tang VW, Brieher WM (2020) Actin protrusions push at apical junctions to maintain E-cadherin adhesion. Proc Natl Acad Sci U S A 117:432–438

    Article  CAS  Google Scholar 

  123. Cao J, Schnittler H (2019) Putting VE-cadherin into JAIL for junction remodeling. J. Cell Sci. 132.

  124. Izumi G et al (2004) Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J Cell Biol 166:237–248

    Article  CAS  Google Scholar 

  125. Ivanov AI, Nusrat A, Parkos CA (2004) Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 15:176–188

    Article  CAS  Google Scholar 

  126. Levayer R, Pelissier-Monier A, Lecuit T (2011) Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 13:529–540

    Article  CAS  Google Scholar 

  127. Bulgakova NA, Brown NH (2016) Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin-Bazooka complex. J Cell Sci 129:477–482

    CAS  Google Scholar 

  128. Venhuizen JH, Jacobs FJC, Span PN, Zegers MM (2020) P120 and E-cadherin: double-edged swords in tumor metastasis. Semin Cancer Biol 60:107–120

    Article  CAS  Google Scholar 

  129. Hartsock A, Nelson WJ (2012) Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS ONE 7:e37476

    Article  CAS  Google Scholar 

  130. Cadwell CM, Su W, Kowalczyk AP (2016) Cadherin tales: Regulation of cadherin function by endocytic membrane trafficking. Traffic 17:1262–1271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by an internal funding from the College of Health & Life Sciences, Hamad Bin Khalifa University, a member of the Qatar Foundation. A.M.G. and S.R. are supported by a postdoctoral fellowship and scholarship from the College of Health & Life Sciences, Hamad Bin Khalifa University, a member of the Qatar Foundation, respectively.

Funding

This work is supported by an internal funding from the College of Health & Life Sciences, Hamad Bin Khalifa University, a member of the Qatar Foundation. A.M.G. and S.R. are supported by a postdoctoral fellowship and scholarship from the College of Health & Life Sciences, Hamad Bin Khalifa University, a member of the Qatar Foundation, respectively.

Author information

Authors and Affiliations

Authors

Contributions

K.H.B. conceived the article and prepared the figures. All authors contributed in writing the article.

Corresponding author

Correspondence to Kabir H. Biswas.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors approve of this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, S., Geethakumari, A.M. & Biswas, K.H. Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 101, 51–62 (2021). https://doi.org/10.1007/s41745-020-00214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00214-0

Keywords

Navigation