Skip to main content
Log in

High Ti- bearing Gabbros from Chalk Hills of Salem, Southern India: A Co-genetic Origin during Neoproterozoic Alaskan-type Evolution

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Chalk hills of Salem complex also called Salem mafic and ultramafic complex (SMUC), occurs in northern part of Cauvery suture zone (CSZ), southern granulite terrane (SGT), India with the lithological sequence of ultramafic cumulates, mafic intrusions of gabbros and amphibolites with quartzo-feldspathic veins and ultrapotassic dykes. Recently the complex has been described as Neoproterozoic Alaskan-type. The Ti- rich gabbros are in association with serpentinized dunites and pyroxenites in the form of several intrusions at various locations of the complex. The petrography of these gabbros shows sub-alkaline to alkaline in nature with mineralogy of two pyroxenes and plagioclases of calcicsodic assemblages along with magnetite-titanomagnetite-ilmenite (Ti-spinels). The whole rock geochemistry indicates that they are tholeiitic in nature with enrichment of LILE (Rb, Ba, Th, Sr) and depletion of HFSE (Nb, Ta, Ti) with reference to N-MORB. The mineral chemistry of clinopyroxenes from these gabbros show slightly higher Mg# (0.68–0.80), TiO2 (0.40–0.73 wt%) with lower Al2O3 (4.4–5.5 wt%), Na2O (0.53–0.94 wt%) and Cr2O3 (0.1–0.17 wt%) contents. The orthopyroxenes also show low Al2O3 (1.4–2.3 wt%), Cr2O3 (up to 0.13 wt%), and relatively higher MgO (17.11–21.79 wt%). The Ti- bearing oxides (ilmenites) of these gabbros are characterized by higher contents of TiO2 (38–51 wt%) and FeO (46–56 wt%), similar to that of Ti-Fe rich Alaskan- type of mafic rocks. On various tectonic discrimination diagrams of whole rock and clinipyroxene mineral chemistry of these gabbros reveal that they are derived from subduction related components of arc magmas of titanium rich, evolved through the process of high degree of crystal fractionation. From the two-pyroxene thermometry, the temperature of formation of these gabbros are determined as 893–1014°C and the clinopyroxene barometry results variable pressures of 8–13 kbars. The tectonic setting with the available age relationships from the complex suggest these intrusions are syntectonic and co-genetic of late emplacements along with the ultramafics during Neoproterozoic subduction events. Such occurrences of high Ti- bearing gabbros are common in many Alaskan- type of complexes like Neoproterozoic Arabian Nubian Shield and other parts of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, K.I. and Kushiro, I. (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib. Mineral. Petrol., v.18, pp.326–337.

    Article  Google Scholar 

  • Asthana, D. (1991) Relict clinopyroxenes from within-plate metadolerites of the Petroi metabasalt, the New England fold belt, Australia. Mineral. Magz., v.55, pp.549–561.

    Article  Google Scholar 

  • Balaram, V. and Rao, T.G. (2003) Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectrosc., v.24, pp.206–212.

    Google Scholar 

  • Bartlett, J.M., Dougherty, J.S., Harris, N.B.W., Hawkesworth, C.J. and Santosh, M. (1998) The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terranes: an example from the Proterozoic mobile belt of south India. Contrib. Mineral. Petrol., v.131, pp.181–195.

    Article  Google Scholar 

  • Basu, A.K. (1982) An Interim report on the investigation for magnesite in Chalk Hills area, Salem district, Tamil Nadu. Unpubld. Report, Geol. Surv. India, FS 1978–79.

  • Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., Ariskin, A.A., Mochalov, A.G. and Sobolev, A.V. (2005) Crustal evolution of island arc ultramafic magma, Galmoenan pyroxenite dunite plutonic complex, Koryak Highland (Far East Russia). Jour. Petrol., v.46, pp.1345–1366.

    Article  Google Scholar 

  • Beccaluva, L., Macciotta, G., Piccardo, G.B. and Zeda, O. (1989) Clinopyroxene composition of ophiolitic basalts as petrogenetic indicators. Chemical. Geol., v.77, pp.165–182.

    Article  Google Scholar 

  • Bellieni, G., Comin Chiramonti, P., Marques, L.S., Melfi, A.J., Piccirillo, E.M., Nardy, A. J.R. and Roisenberg, A. (1984) High- and low-TiO2 flood basalts from the Parana plateau (Brazil): Petrology and geo chemical bearing on their mantle origin. Neues Jahrbuch Mineralogie Abhandlungen, v.150, pp.273–306.

    Google Scholar 

  • Bender, J.F., Hodges, F.N. and Bence, A.E. (1978) Petrogenesis of basalts from the project FAMOUS area: experimental study from 0 to 15 kbars. Earth Planet. Sci. Lett., v.41(3), pp.277–302.

    Article  Google Scholar 

  • Buddington, A.F. and Lindsley, D.H. (1964) Iron-titanium oxide minerals and synthetic equivalents. Jour. Petrol., v.5(2), pp.310–357.

    Article  Google Scholar 

  • Burns, L.E. (1985). Border ranges ultramafic-mafic complexes south-central Alaska, cumulate fractionates of island arc volcanic rocks. Canadian Jour. Earth Sci., v.22, pp.1020–1038.

    Article  Google Scholar 

  • Chetty, T.R.K. (1996) Proterozoic shear zones in southern granulite terrane, India. In: M. Santosh and M. Yoshida (Eds.), The Archean and Proterozoic Terranes in Southern India within East Gondwana, Japan, Gondwana Res., Group Mem., pp.77–89.

  • Ci Tian, H., Zhang C., Teng F.Z., Long Y.J., GuangLi, S., He, Y., ShanKe, Yang Chen, X. and Yang, W. (2020) Diffusion-driven extreme Mg and Fe isotope fractionation in Panzhihua ilmenite: Implications for the origin of mafic intrusion. Geochim. Cosmochim. Acta, v.278, pp.361–375.

    Article  Google Scholar 

  • Collins, A.S., Clark, C., Sajeev, K., Santosh, M., Kelsey David, E. and Martin, H. (2007) Passage through India: Mozambique ocean suture, high pressure granulites and Palghat-Cauvery shear zone system. Terra Nova, v.19, pp.41–147.

    Article  Google Scholar 

  • Collins, A.S., Clark, C. and Plavsa, D. (2014). Peninsula India in Gondwana: the tectonothermal evolution of the southern granulite terrane and its Gondwana counter parts. Gondwana Res., v.25, pp.190–203.

    Article  Google Scholar 

  • Cox, K.G. (1983) The Karoo province of southern Africa: origin of trace element enrichment patterns. In: Hawkesworth, C. J. and Norry, M.J. (Eds.), Continental basalts and mantle xenoliths. Shiva Geology Series, Springer Publications, pp.139–157.

  • Deans, T. and Powell, J.L. (1968) Trace elements and stron-tium isotopes in carbonatites, fluorites and limestones from India and Pakistan. Nature, v.218, pp.750–752.

    Article  Google Scholar 

  • DeBari, S.M. and Coleman, R.G. (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic mafic assemblage, Tonsina, Alaska. Jour. Geophy. Res., v.94(B4), pp.4373–4391.

    Article  Google Scholar 

  • Deer, W.A., Howie, R.A. and Zussman, J. (1962) An introduction to the rock forming minerals. Longmans, London.

    Google Scholar 

  • Dupuy, C., Marsh, J., Michard, A. and Test, S. (1988) Asthenospheric source for Mesozoic dolerites from Liberia (Africa): trace element and isotopic evidence. Earth Planet. Sci. Lett., v.87, pp.100–110.

    Article  Google Scholar 

  • Dutta, D., Bhui, U.K., Sengupta, P, Sanyal, S. and Mukhopadhyay, D. (2011) Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi layered complex, Tamil Nadu, India. Ore Geol. Rev., v.40, pp.90–107.

    Article  Google Scholar 

  • Falaknazi, M. and Karimi, M. (2016) Mineralogy and geochemistry of titaniferous gabbros of ophiolitic Fanouj Zone (Sistan & Baluchestan, Iran). Modern Appl. Sci., v.10(4), pp.189–199.

    Article  Google Scholar 

  • Farahat, E.S. and Helmy, H.M., (2006) Abu Hamamid Neoproterozoic Alaskan-type complex, south Eastern Desert, Egypt. Jour. African Earth Sci., v.45, pp.187–197.

    Article  Google Scholar 

  • Fershtater, G.B., Montero, P., Borodina, N.S., Pushkarev, E.V., Smimov, V.N., Bea, F., 1997. Uralian magmatism: An overview. Tectonophysics, v.276, pp.87–102.

    Article  Google Scholar 

  • Findlay, D.C. (1969) Origin of the Tulameen ultramafic gabbro complex, southern British Columbia: Canadian Jour. Earth Sci., v.6, pp.399–425.

    Google Scholar 

  • Fodor, R.V. (1987) Low and high-TiO2 flood basalts of southern Brazil: origin from picritic parentage and a common source. Earth Planet. Sci. Lett., v.84, pp.423–430.

    Article  Google Scholar 

  • Foley, J.Y. (1991) Metallogeny of ophiolitic and other mafic-ultramafic terranes in Alaska. U.S. Dept. interior. Geol. Surv., open file report.

  • Ghosh, J.G., Maarten J., de Wit and Zartman R.E. (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrane of India, with implications for Gondwana studies. Tectonics, v.23, TC3006, doi: https://doi.org/10.1029/2002TC001444, 2004.

    Article  Google Scholar 

  • Gopalakrishnan, K. (1994) An overview of Southern Granulite Terrane, India-constraints in reconstruction of Precambrian assembly of Gondwanaland. Gondwana Nine 2, Oxford and IBH Pub. pp.1003–1026.

  • Green, T.H., and Ringwood, A.E. (1968) Genesis of the calc-alkaline igneous rock suite. Contrib. Mineral. Petrol., v.18, pp.105–162.

    Article  Google Scholar 

  • Habtoor, A., Ahmed A.H. and Harbi, H. (2016) Petrogenesis of the Alaskan-type maûc-ultramaûc complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia. Lithos, v.263, pp.33–51.

    Article  Google Scholar 

  • Hawkesworth, C.J, Turner, S.P, Mc Dermott, F., Peate, D.W.V and Calsteren, P. (1997) U-Th isotopes in arc magmas: Implication for element transfer from the subducted crust. Science, v.276, pp.551–555.

    Article  Google Scholar 

  • He, X.F., Santosh, M, Zhang, Z.M., Tsunogae, T., Chetty, T.R.K., Ram Mohan, M. and Anbazhagan, S. (2015) Shonkinites from Salem, southern India: Implications for Cryogenian alkaline magmatism in rift-related setting. Jour. Asian Earth Sci., v.113(2), pp.812–825.

    Article  Google Scholar 

  • Hebert, R., and Laurent, R. (1990) Petrography and mineralogy of oceanic peridotites and gabbros: some comparison with ophiolite complexes. Ofioliti, v.7, pp.299–324.

    Google Scholar 

  • Helmy, H.M. and El Mahallawi, M.M. (2003) Gabbro Akarem mafic ultramafic complex Eastern Desert Ggypt: A late Precambrian analogue of Alaskan-type of complexes. Mineral. Petrol., v.77, pp.85–108.

    Article  Google Scholar 

  • Helmy, H.M., Abd El-Rahman, Y., Yoshikawa, M., Shibata, M., Arai, S., Kagami, H. and Tamura, A. (2014) Petrology and Sm-Nd dating of the Genina Gharbia Alaskan- type complex (Egypt): insights into deep levels of Neoproterozoic island arcs. Lithos, v.198–199, pp.263–280.

    Article  Google Scholar 

  • Helmy, H.M., Yoshikawa, M., Shibata, T., Arai S. and Kagamie, H. (2015) Sm-Nd and Rb-Sr isotope geochemistry and petrology of Abu Hamamid intrusion, Eastern Desert, Egypt: An Alaskan-type complex in a back arc setting. Precambrian Res., v.258, pp.234–246.

    Article  Google Scholar 

  • Himmelberg, G.R. and Loney, R.A. (1995) Characteristics and Petrogenesis of Alaskan- type ultramafic-mafic intrusions, Southeastern Alaska. U. S. Geol. Surv. Professional Paper, p.1564.

  • Irvine, T.N. (1974) Petrology of the Duke Island ultramafic complex, south eastern Alaska. Geol. Soc. America Mem., 138, p.240

    Google Scholar 

  • Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of common volcanic rocks. Canadian Jour. Earth Sci., v.8, pp.523–548.

    Article  Google Scholar 

  • Ishiwatari, A. and Ichiyama, Y. (2004) Alaskan- type plutons and ultramafic lavas in Far East Russia, northeast China and Japan. Intern. Geol. Rev., v.46, pp.316–331.

    Article  Google Scholar 

  • Kempton, P. and Harmon, R. (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic under plating. Geochim. Cosmochim. Acta, v.56, pp.971–986.

    Article  Google Scholar 

  • Kepezhinskas, P., Mc Dermott, F., Defant, M.J, Hochstaedter, A., Drummond, M.S, Hawkesworth, C.J, Koloskov, A., Maury, R.C. and Bellon, H. (1997) Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta, v.61, pp.577–600.

    Article  Google Scholar 

  • Khedar M.Z. and Arai, S. (2016) Petrology of a Neoproterozoic Alaskan-type complex from the Eastern Desert of Egypt: Implications for mantle heterogeneity. Lithos, v.263, pp.15–32.

    Article  Google Scholar 

  • Khedar M.Z., El-Awady, A., Arai, S., Hauzenberger, C., Tamura, A., Stern, R.J. and Morishita, T. (2020) Petrogenesisi of the ∼740 Korab kansi maficultramfic intrusion, South eastern Desert of Egypt: Evidence of Ti- rich ferropicritic magmatism. Gondwana Res., v.82, pp.48–72.

    Article  Google Scholar 

  • Leake, B.E. (1978) The chemical distinction between ortho- and para-amphibolites. Jour. Petrol., v.5, pp.238–254.

    Article  Google Scholar 

  • Le Bas, M.J. (1962) The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Jour. Sci., v.260, pp.267–288.

    Article  Google Scholar 

  • Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marehal, M. (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series. Earth Planet. Sci. Lett., v.59, pp.139–154.

    Article  Google Scholar 

  • LeMaitre, R.W., Bateman, P., Dudek, A., Keller, J., Lemeyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Steckeisen, A., Wooley, A.R. and Zanettin, B. (1989) A Classification of Igneous Rocks and a Glossary of Terms: Blackwell Scientific, Oxford, United Kingdom, 193p.

  • Loucks, R.R. (1990) Discrimination of ophiolitic from non-ophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ration in clinopyroxene: Geology, v.18, pp.346–349.

    Article  Google Scholar 

  • Maitra, M., Bose, M.K. and Ray, J. (2006) Interpretative mineral chemistry of ultramafic rocks of Chalk Hills, Tamil Nadu. Jour. Geol. Soc. India, v.68, pp.831–840.

    Google Scholar 

  • Miyashiro, A. and Shido, F. (1975) Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium and nickel. American Mineral., v.275, pp.265–277.

    Google Scholar 

  • Mohanty, N., Singh, S.P., Satyanarayanan, M., Korakoppa, M.M. and Sikha, H. (2018) Chromian spinel compositions from Madawara ultramafics, Bundelkhand Craton: Implications on petrogenesis and tectonic evolution of the southern part of Bundelkhand Craton, Central India. Geol. Jour., v.59, pp.2099–2123.

    Google Scholar 

  • Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K. and Gottardi, G. (1988) Nomenclature of pyroxenes. American Mineral., v.73, pp.1123–1133.

    Google Scholar 

  • Mullen, E.D, 1983. MnO/TiO2/P2O5 a minor element discriminations for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett., v.62, pp.53–62.

    Article  Google Scholar 

  • Murphy, J.B. (1988) Late Precambrian to late Devonian mafic magmatism in the Antigonish Highlands of Nova Scotia: multistage melting of hydrated mantle. Canadian Jour. Earth Sci., v.25, pp.473–485.

    Article  Google Scholar 

  • Murthy, S.R.N. (1979) Petrology of ultramafic rocks Chalk hills, Salem, Tamil Nadu. Rec. Geol. Surv. India, v.112(5), pp.15–35.

    Google Scholar 

  • Nimis, P. and Ulmer, P. (1998) Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib. Mineral.Petrol., v.133, pp.122–135.

    Article  Google Scholar 

  • Parlak, O., Delaloye, M. and Bingol, E. (1996) Mineral chemistry of ultramafic cumulates as an indicator of arc related origin of Mersin ophiolite (Southern Turkey). Geologische Rundschau, v.85, pp.647–661.

    Article  Google Scholar 

  • Pearce, J.A. (1980) Geochemical evidence for genesis and eruptive setting of lavas from Tethyan ophiolites. In: Panayiotou, A. (Ed.), Ophiolites. Geol. Surv. Depart., Cyprus, pp. 261–272.

  • Pearce, J.A. (1996). A user’s guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geol. Associ. Canada, Short Course Notes 12, pp.79–113.

  • Pettigrew, N.T. and Hattori, K.H. (2006) The Quetico intrusions of Western Superior Province: Neoarchean examples of Alaskan/Ural-type maficultramafic intrusions. Precambrian Res., v.149, pp.21–42.

    Article  Google Scholar 

  • Putirka, K. (2008) Thermometers and barometers for volcanic systems. Review. Mineral. Geochemi., v.69, pp.61–120.

    Article  Google Scholar 

  • Ratcliffe, N.M. (1987) High TiO2 metadiabase dikes of the Hudson Highlands, New York and New Jersey: possible late Proterozoic rift rocks in the New York recess. American Jour. Sci., v.287, pp.817–850.

    Article  Google Scholar 

  • Reddy, B.M. and Janardhan, A.S. (1988) Titanoclinohumite from ultramafic rocks of Salem, Tamil Nadu, South India. Jour. Geol. Soc. India, v.31, pp.499–503.

    Google Scholar 

  • Reddy, B.M., Janardhan, A.S. and Peucat, J.J. (1995) Geochemistry, age and origin of alkaline and ultramafic rocks of Salem, Tamil Nadu, South India. Jour. Geol. Soc. India, v.45, pp.251–262.

    Google Scholar 

  • Rogers, C., Cousens, B., Ernst, R.E. and Soderlund, U. (2019) Phosphorus and Potassium Metasomatic Enrichment in the Mantle Source of the c. 1450–1425Ma Michael-Shabogamo Gabbro of Eastern Laurentia. Jour. Petrol. v.60(1), pp.57–84

    Article  Google Scholar 

  • Rublee, V.J. (1994) Chemical petrology, mineralogy and structure of the Tulameen Complex, Princeton area, British Colombia [Unpublished M.Sc. thesis]: University of Ottawa, Canada, p.179.

  • Santosh, M., and Sajeev, K. (2006) Anticlockwise evolution of ultra-high temperature granulites within continental collision zone in southern India. Lithos, v.92, pp.447–464.

    Article  Google Scholar 

  • Santosh, M., Maruyama, S. and Sato, K. (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res., v.16, pp.321–341.

    Article  Google Scholar 

  • Santosh, M., Xiao, W.J., Tsunogae, T., Chetty, T.R.K. and Yellappa, T. (2012) The Neoproterozoic subduction complex in southern India: SIMS zircon U-Pb ages and implications for Gondwana assembly. Precambrian Res., v.192, pp.190–208.

    Article  Google Scholar 

  • Santosh, M., Shaji, E., Tsunogae, T., Ram Mohan, M., Satyanarayanan, M. and Horie, K. (2013) Neoarchean suprasubduction zone ophiolite from Agali hill, southern India: petrology, zircon SHRIMP U-Pb geochronology, geochemistry and tectonic implications. Precambrian Res., v.231, pp.301–324.

    Article  Google Scholar 

  • Santosh, M., Yang, Q.Y., Ram Mohan, M., Tsunogae, T., Shaji, E. and Satyanarayanan, M. (2014) Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes. Lithos, v.208–209, pp.430–445.

    Article  Google Scholar 

  • Satheesh Kumar R. and Prasanna kumar, V. (2009) Fabric evolution in Salem Attur Shear Zone, South India, and its implications on the kinematics. Gondwana Res., v.16, pp.37–44.

    Article  Google Scholar 

  • Sato, K., Santosh M., Tsunogae, T., Chetty, T.R.K. and Hirata, T. (2011) Subduction-accretion-collision history along the Gondwana suture in southern India: A laser ablation ICP-MS study of zircon chronology. Jour. Asian Earth Sci., v.40, pp.162–171.

    Article  Google Scholar 

  • Scambelluri, M. and Rampone, E. (1999) Mg-metasomatism of oceanic gabbros and its control on Ti-clinohumite formation during eclogitization. Contrib. Mineral. Petrol., v. 135, pp.1–17.

    Article  Google Scholar 

  • Shaji, E., Santosh, M., Li, S.S., Manikyamba, C., Tsunogae, T., Dhanil Dev, S.G., Panicker, A.G., Dhanakumar Singh, T. and Subramanyam, K.S.V. (2019) Buds of Santonian magmatism associated with Marion hotspot in southern India. Geol. Jour., v.54(5), pp.3174–3187.

    Google Scholar 

  • Shervais, J.W. (1982) Ti-V plots and the petrogenesis of ophiolitc lavas. Earth. Planet. Sci. Lett., v.59, pp.101–118.

    Article  Google Scholar 

  • Subramanyam, A.P. (1956) Mineralogy and petrology of the Sittampundi Complex, Salem district, Madras state, India. Geol. Soc. America Bull., v.67, pp.317–390.

    Article  Google Scholar 

  • Su, B.X., Qin, K.Z, Sakyi, P.A., Malaviarachchi, S.P.K., Liu, P.P., Tang, D.M., Xiao, Q.H., Sun, H., Guang Ma, Y. and Qian Mao, Q. (2012) Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies. Internat. Geol. Rev., v.54(3), pp.249–269.

    Article  Google Scholar 

  • Sun, S.S. and Mc Donough, W.F. (1989) Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, Geol. Soc., Spec. Publ., v.42, pp.313–345.

  • Surour, A.A., Ahmed, A.H., and Harbi, H.M. (2017) Mineral chemistry as a tool for understanding the petrogenesis of Cryogenian (arc related)-Ediacaran (post collisional) gabbros in the western Arabian Shield of Saudi Arabia. Int. Jour. Earth Sci., (Geol Rundsch), v.106, pp.1597–1617.

    Article  Google Scholar 

  • Taylor, H.P., Jr. (1967) The zoned ultramafic complexes of south eastern Alaska, Part 4.III. In: Wyllie, P.J., (Ed.), Ultramafic and related rocks: New York, John Wiley, pp.96–118.

    Google Scholar 

  • Taylor, H.P., Jr. and Noble, J.A. (1960) Origin of the ultramafic complexes in south eastern Alaska: International Geological Congress, 21st, Copenhagen, 1960, Report, Part-13, pp.175–187.

  • Teale, W., Collins, A., Foden, J., Payne, J., Plavsa, D., Chetty, T.R.K., Santosh, M. and Fanning, M. (2011) Cryogenian (∼830Ma) mafic magmatism and metamorphism in the northern Madurai Block, Southern India: a magmatic link between Sri Lanka and Madagascar. Jour. Asian Earth Sci., v.42, pp.223–233.

    Article  Google Scholar 

  • Tistl, M., Burgath, K.P., Höhndorf, A., Kreuzer, H., Muñoz, R. and Salinas, R. (1994) Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth Planet. Sci. Lett., v.126, pp.41–59.

    Article  Google Scholar 

  • Toplis, M.J., Dingwell, D.B., and Libourel, G. (1994) The effect of phosphorus on the iron redox ratio, viscosity, and density of an evolved ferro-basalt. Contrib. Mineral. Petrol., v.117(3), pp.293–304.

    Article  Google Scholar 

  • Wang, K., Plank, T., Walker, J. D., and Smith, E. I. (2002) A mantle melting profile across the basin and range, SW USA. Jour. Geophys. Res., v.107(B1), p.2017.

    Article  Google Scholar 

  • Yellappa, T., Chetty, T.R.K., Tsunogae, T. and Santosh, M. (2010) The Manamedu Complex: Geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within the Gondwana suture in southern India. Jour. Geodynamics, v.50, pp.268–285.

    Article  Google Scholar 

  • Yellappa, T., Santosh, M., Chetty, T.R.K., Sanghoon Kwon, Chansoo Park, Nagesh, P., Mohanty D.P. and Venkatasivappa, V. (2012) A Neoarchean dismembered ophiolite complex from southern India: Geochemical and geochronological constraints on its suprasubduction origin. Gondwana Res., v.21, pp.246–265.

    Article  Google Scholar 

  • Yellappa, T., Venkatasivappa, V., Koizumi, T., Chetty, T.R.K., Santosh, M. and Tsunogae, T. (2014) The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, Southern India: petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics. Jour. Asian Earth Sci., v.95, pp.81–98.

    Article  Google Scholar 

  • Yellappa, T., Santosh, M. and Manju, S. (2019) The mafic-ultramafic complex of Salem, southern India: An analogue for Neoproterozoic Alaskan- type complex. Geol. Jour., v.54(5), pp.3017–3040

    Google Scholar 

  • Zhou, M. F., Robinson, P. T., Lesher, C. M., Keays, R. R., Zhang, C. J. and Malpas, J. (2005) Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua gabbroic layered intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China. Jour. Petrol., v.46(11), pp.2253–2280.

    Article  Google Scholar 

Download references

Acknowledgment

The author is grateful to Director, CSIR-NGRI, and Hyderabad, India for providing facilities, encouragement and permission to publish this paper. He is also thankful to his colleagues Dr. E.V.S.S.K. Babu, Ms. S. Manju, Dr. T. Vijay Kumar and Dr. Keshava Krishna, for their help in geochemical analysis. The author is also very much thankful to anonymous reviewers for their kind suggestions and critical comments. This work forms a part of Department of Science and Technology, Government of India, Sponsored Project Ref: EEQ/2018/001004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yellappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yellappa, T. High Ti- bearing Gabbros from Chalk Hills of Salem, Southern India: A Co-genetic Origin during Neoproterozoic Alaskan-type Evolution. J Geol Soc India 97, 21–34 (2021). https://doi.org/10.1007/s12594-021-1622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1622-5

Navigation