Skip to main content

Advertisement

Log in

Shock Metamorphic Features in the Archean Simlipal Complex, Singhbhum Craton, Eastern India: Possible Remnant of a Large Impact Structure

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Simlipal complex in eastern India is an elliptical structure with diameter of ca. 50 km coinciding with an elliptical region of high gravity. It overlies the Archaean basement of the Singhbhum craton and has a ring structure characterized by complex series of concentric ridges with inward dipping slopes. Quartz clasts in melt-breccias from the complex display diagnostic shock metamorphic features such as two to three sets of decorated and annealed planar deformation features (PDFs), spall and concussion micro-fractures, and the presence of coesite. They also preserve microstructures suggestive of crystallographically-controlled melting/amorphization along two or three planar directions, and within concussion micro-fractures. The inferred shock pressures in excess of 40–60 GPa are possible only during bolide impact. The Simlipal structure is possibly the remnant of a large complex impact crater having an original diameter of at least 50 km. Although zircons from an impact melt rock furnish a concordia age of 3107±14 Ma, in the absence of any unambiguous shock metamorphic effects in them, it is difficult to assign the age to the impact event. Therefore, the age of the impact is currently unconstrained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, P.K. and Ghosh, S.K. (1994) Is the Similipal Complex a product of shallow plume tectonics? Jour. Geol. Soc. India, v.43, pp.353–359.

    Google Scholar 

  • Bose, S., Das, K., Kimura, K., Hidaka, H., Dasgupta, A., Ghosh, G. and Mukhopadhyay, J. (2016) Neoarchean tectonothermal imprints in the Rengali Province, eastern India and their implication on the growth of Singhbhum Craton: evidence from zircon U-Pb SHRIMP data. Jour. Metamorph. Geol., v.34, pp.743–764.

    Article  Google Scholar 

  • Byerly, G.R., Lowe, D.R., Wooden, J.L. and Xie, X. (2002) An Archean impact layer from the Pilbara and Kaapvaal cratons. Science, v.297, pp.1325–1327.

    Article  Google Scholar 

  • Chatterjee, N., Banerjee, M., Bhattacharya, A. and Maji, A.K. (2010) Monazite chronology, metamorphism-anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precambrian Res., v.179, pp.99–120.

    Article  Google Scholar 

  • Chattopadhyay, S., Upadhyay, D., Nanda, J.K., Mezger, K., Pruseth, K.L. and Berndt, J. (2015) Proto-India was a part of Rodinia: Evidence from Grenville-age suturing of the Eastern Ghats Province with the Paleoarchean Singhbhum craton. Precambrian Res., v.266, pp.506–529.

    Article  Google Scholar 

  • Chennakesavulu, N. and Sahu, K.C. (1980) On olivines and pyroxenes of Amjori sill, Simlipal complex, Mayurbhanj, Orissa. Jour. Geo. Soc. India, v.21, pp.211–231.

    Google Scholar 

  • Crowley, J.L., Chatterjee, N., Bowring, S.A., Sylvester, P.J., Myers, J.S. and Searle, M.P. (2005) U-(Th)-Pb dating of monazite and xenotime by EMPA, LA-ICPMS, and IDTIMS: examples from the Yilgarn Craton and Himalayas. Proc. 15th Ann. Goldschmidt Conf., Abstr.

  • Davis, D.W. (2008) Sub-million year age resolution of Precambrian igneous events by thermal extraction (TE-TIMS) Pb dating of zircon: Application to crystallization of the Sudbury impact melt sheet. Geology, v.36, pp.383–386.

    Article  Google Scholar 

  • Engelhardt, W.v. and Stöffler, D. (1965) Spaltflächen im Quarz als Anzeichen für Einschläge großer Meteoriten. Naturwissenschaften, v.52, pp.489–490.

    Article  Google Scholar 

  • Engelhardt, W.V. and Stöffler, D. (1968) Stages of shock metamorphism in the crystalline rocks of the Ries basin, Germany. In: B. M. French and N. M. Short (Eds.), Shock Metamorphism of Natural Materials. Mono Book Corp., Baltimore, Maryland, pp.159–168.

    Google Scholar 

  • Erickson, T.M., Kirkland, C.L., Timms, N.E., Cavosie, A.J. and Davison, T.M. (2020) Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognised meteorite impact structure. Nat. Commun., v.11(1), pp.1–8.

    Article  Google Scholar 

  • Ernstson, K., Rampino, M.R. and Hill, M. (2001) Cratered cobbles in Triassic Buntsandstein conglomerates in northwestern Spain: an indicator of shock deformation in the vicinity of large impacts. Geology, v.29, pp.11–14.

    Article  Google Scholar 

  • Fei, Y. and Bertka, C.M. (1999) Phase transitions in the Earth’s mantle and mantle mineralogy. In: Y. Fei, C. M. Bertka and B. O. Mysen (Eds.), Mantle petrology: Field observations and high-pressure experimentation: A tribute to Francis R. (Joe) Boyd. The Geochemical Society, Houston, Texas, pp.189–207.

    Google Scholar 

  • Ferrière, L., Morrow, J.R., Amgaa, T. and Koeberl, C. (2009) Systematic study of universal-stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results. Meteorit. Planet. Sci. Lett., v.44, pp.925–940.

    Article  Google Scholar 

  • French, B.M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar and Planetary Institute, Contribution CB-954, Houston, Texas.

    Google Scholar 

  • French, B.M. and Koeberl, C. (2010) The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t and why. Earth-Sci. Rev., v.98, pp.123–170.

    Article  Google Scholar 

  • French, B.M. and Short, N.M. (1968) Shock Metamorphism of Natural Materials. Mono Book Corp., Baltimore, Maryland.

    Google Scholar 

  • Grieve, R.A.F. and Pilkington, M. (1996) The signature of terrestrial impacts. Jour. Australian Geol. Geophys., v.16, pp.399–420.

    Google Scholar 

  • Hamers, M.F., Pennock, G.M. and Drury, M.R. (2017) Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz. Phys. Chem. Minerals, v.44, pp.263–275.

    Article  Google Scholar 

  • Iyengar, S.V.P., Chandy, K.C. and Narayanaswamy, R. (1981) Geochronology and Rb-Sr systematics of the igneous rocks of the Simlipal Complex, Orissa. Indian Jour. Earth Sci., v.8, pp.61–65.

    Google Scholar 

  • Iyengar, S.V.P., Venkataraman, P.K. and Banerjee, S. (1964) Amjori sill: a differentiated dolerite sill from the Simlipal Hills, Orissa state, India. Research papers in petrology, Geol. Surv. India Misc. Publ. 8.

  • Jackson, J.C., Horton, J.W., Chou, I.-M. and Belkin, H.E. (2016) Coesite in suevites from the Chesapeake Bay impact structure. Meteorit. Planet. Sci., v.51, pp.946–965.

    Article  Google Scholar 

  • Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology. Chem. Geol., v.211, pp.47–69.

    Article  Google Scholar 

  • Johnson, B.C. and Melosh, H.J. (2012) Impact spherules as a record of an ancient heavy bombardment of Earth. Nature, v.485, pp.75–77.

    Article  Google Scholar 

  • Kamo, S.L., Reimold, W.U., Krogh, T.E. and Colliston, W.P. (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylite breccias and granophyre. Earth Planet. Sci. Lett., v.144, pp.369–388.

    Article  Google Scholar 

  • Kieffer, S.W. (1971) Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. Jour. Geophys. Res., v.76, pp.5449–5473.

    Article  Google Scholar 

  • Kumar, A., Parashuramulu, V., Shankar, R. and Besse, J. (2017) Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India: Implications to Vaalbara supercontinent. Precambrian Res., v.292, pp.163–174.

    Article  Google Scholar 

  • Langenhorst, F. (2002) Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bull. Czech Geol. Surv., v.77, pp.265–282.

    Google Scholar 

  • Langenhorst, F. and Deutsch, A. (1994) Shock experiments on pre-heated α-and β-quartz: I. Optical and density data. Earth Planet. Sci. Lett., v.125, pp.407–420.

    Article  Google Scholar 

  • Li, S.-S., Keerthy, S., Santosh, M., Singh, S.P., Deering, C.D., Satyanarayanan, M., Praveen, M.N., Aneeshkumar, V., Indu, G.K., Anilkumar, Y. and Sajinkumar, K.S. (2018) Anatomy of impactites and shocked zircon grains from Dhala reveals Paleoproterozoic meteorite impact in the Archean basement rocks of Central India. Gondwana Res., v.54, pp.81–101.

    Article  Google Scholar 

  • Lowe, D.R. and Byerly, G.R. (1986) Early Archean silicate spherules of probable impact origin, South Africa and Western Australia. Geology, v.14, pp.83–86.

    Article  Google Scholar 

  • Ludwig, K.R. (2003) User’s Manual for ISOPLOT/3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special. Publication 4.

  • Mandal, N., Mitra, A.K., S., M. and Chakraborty, C. (2006) Is the outcrop topology of dolerite dikes of the Precambrian Singhbhum Craton fractal? Jour. Earth Sys. Sci., v.115, pp.643–660.

    Article  Google Scholar 

  • Mashchak, M.S. and Naumov, M.V. (1996) The Suavjarvi Structure: an Early Proterozoic Impact Site on the Fennoscandian Shield (abstract). 27th Lunar Planet. Sci. Conf.

  • Master, S., Cooper, G.R.J., Chakraborti, T.M. and Mukherjee, T. (2019) First Evidence for an Impact Origin of the >45 km Diameter Simlipal Ring Structure, Singhbhum Craton, Odisha, India. 82nd Annual Meeting of The Meteoritical Society, Sapporo, Japan.

  • McDonough, W.F. and Sun, S. (1995) The composition of the Earth. Chem. Geol., v.120, pp.223–253.

    Article  Google Scholar 

  • Melosh, H.J. (1989) Impact Cratering: A Geologic Process. Oxford University Press, New York, 245p.

    Google Scholar 

  • Misra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S. and Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Res., v.93, pp.139–151.

    Article  Google Scholar 

  • Misra, S., Moitra, S., Bhattacharya, S. and Sivaraman, T.V. (2000) Archaean granitoids at the contact of Eastern Ghats Granulite Belt and Singhbhum-Orissa Craton in Bhuban-Rengali sector, Orissa, India. Gondwana Res., v.3, pp.205–213.

    Article  Google Scholar 

  • Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A. (2008) Dating the oldest Greenstone in India, a 3.51 Ga precise U-Pb SHRIMP zircon age for dacitic lava of the southern Iron Ore Group, Singhbhum craton. Jour. Geol., v.116, pp.449–461.

    Article  Google Scholar 

  • Naqvi, S.M. and Rogers, J.J. (1987) Precambrian Geology of India. Oxford University Press, 223p.

  • Pal, S.K., Bhattacharya, A.K. and Majumdar, T.J. (2006) Geological interpretation from Bouguer gravity data over the Singhbhum-Orissa Craton and its surroundings: a GIS approach. Jour. Indian Geophys. Union, v.10, pp.313–325.

    Google Scholar 

  • Pandey, O.P., Mezger, K., Ranjan, S., Upadhyay, D., Villa, I.M., Nägler, T. F. and Vollstaedt, H. (2019) Genesis of the Singhbhum Craton, eastern India; implications for Archean crust-mantle evolution of the Earth. Chem. Geol., v.512, pp.85–106.

    Article  Google Scholar 

  • Pati, J.K., Jourdan, F., Armstrong, R.A., Reimold, W.U., Prakash, K. and Renne, P.R. (2010) First SHRIMP U-Pb and 40Ar/39Ar chronological results from impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Spec. Pap. Geol. Soc. Am., v.465, pp.571–591.

    Google Scholar 

  • Pati, J.K., Reimold, W.U., Koeberl, C. and Pati, P. (2008) The Dhala structure, Bundelkhand craton, Central India-eroded remnant of a large Paleoproterozoic impact structure. Meteorit. Planet. Sci., v.43, pp.1383–1398.

    Article  Google Scholar 

  • Rinehart, J.S. (1968) Intense destructive stresses resulting from stress wave interactions. In: B.M. French and N.M. Short (Eds.), Shock Metamorphism of Natural Materials. Mono Book Corp., Baltimore, Maryland, pp.31–42.

    Google Scholar 

  • Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust, Treatise in Geochemistry, v.3, pp.1–64.

  • Saha, A.K. (1994) Crustal evolution of Singhbhum-North Orissa, eastern India. Mem. Geol. Soc. India, no.27, 341p.

  • Sarkar, S.S. (1982) Notopahar Granitic Complex: an example of magmatic differentiation from Mayurbhanj District, Orissa. Jour. Geol. Soc. India., v.23, pp.53–66.

    Google Scholar 

  • Simonson, B.M., Sumner, D.Y., Beukes, N.J., Johnson, S. and Gutzmer, J. (2009) Correlating multiple Neoarchean-Paleoproterozoic impact spherule layers between South Africa and Western Australia. Precambrian Res., v.169, pp.100–111.

    Article  Google Scholar 

  • Singh, A.K. (2020) The Simlipal Complex, Singhbhum Craton, eastern India: Remnant of a large Mesoarchean impact crater. PhD Thesis, Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, pp.1–167.

    Google Scholar 

  • Srivastava, P.K., Misra, S. and Ray, D. (2020) Simlipal Impact Structure — Its Remote Sensing Images and Importance in Evolution of Early-Middle Archaean Singhbhum-Orissa Craton, Eastern India. 51st Lunar and Planetary Science Conference, The Woodlands, Texas.

  • Srivastava, R.K., Söderlund, U., Ernst, R.E., Mondal, S.K. and Samal, A.K. (2018) Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Res., v.329, pp.5–17.

    Article  Google Scholar 

  • Stähle, V., Altherr, R., Koch, M. and Nasdala, L. (2008) Shock induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany). Contrib. Mineral. Petrol., v.155, pp.457–472.

    Article  Google Scholar 

  • Stöffler, D. (1971) Coesite and stishovite in shocked crystalline rocks. Jour. Geophys. Res., v.76, pp.5474–5488.

    Article  Google Scholar 

  • Stöffler, D. and Langenhorst, F. (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, v.29, pp.155–181.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Upadhyay, D., Chattopadhyaya, S. and Mezger, K. (2019) Formation of Paleoarchean-Mesoarchean Na-rich (TTG) and K-rich granitoid crust of the Singhbhum craton, eastern India: Constraints from major and trace element geochemistry and Sr-Nd-Hf isotope composition. Precambrian Res., v.327, pp.255–272.

    Article  Google Scholar 

  • Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K. and Berndt, J. (2014) Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite (TTG) suite from the Singhbhum Craton, eastern India. Precambrian Res., v.252, pp.180–190.

    Article  Google Scholar 

  • Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C. and Spiegel, W. (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element, and REE analyses. Geostd. Newslett., v.19, pp.1–23.

    Article  Google Scholar 

Download references

Acknowledgements

The U-Pb isotope and trace element data were generated at the Diamond Jubilee Radiogenic Isotope Facility of the Department of Geology and Geophysics, IIT Kharagpur. DU acknowledges financial support from IIT Kharagpur for setting up the laboratory. Biswajit Mishra is thanked for access to the DST funded EPMA National Facility of the Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewashish Upadhyay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Upadhyay, D., Pruseth, K.L. et al. Shock Metamorphic Features in the Archean Simlipal Complex, Singhbhum Craton, Eastern India: Possible Remnant of a Large Impact Structure. J Geol Soc India 97, 35–47 (2021). https://doi.org/10.1007/s12594-021-1623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1623-4

Navigation