Skip to main content
Log in

Polyhydroxyalkanoates: An Exotic Gleam in the Gloomy Tale of Plastics

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are bio-polyesters of hydroxyalkanoates that accumulate intracellularly in case of prokaryotes, as cytoplasmic granules, under carbon rich and paucity of nitrogen, phosphorous, sulphur and oxygen where it can serve as carbon and energy source under nutrient limiting condition and/or environmental stress conditions. In adverse growth conditions, many bacteria have ability to store nutrients in form of PHA granules using their specific metabolic pathways during stationary growth phase, in the presence of high levels of carbon containing nutrient sources. Bacterial PHAs have generated attention as an alternative to petroleum derived synthetic plastics. It possesses the characteristic physico-chemical properties comparable to the synthetic plastics. These properties of PHAs can be improved by blending of PHAs with other natural polymer like starch, cellulose and semisynthetic polymers like poly lactic acids and polycaprolactones. Being eco-friendly, biodegradable and biocompatible; major PHAs such as, Polyhydroxybutyrate (PHB) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) have found numerous vital applications in pharmaceutical, biomedical, textile, cosmetic, agricultural, treatment of waste water and have been successfully employed for Food packaging industries. This review provides a comprehensive knowledge about the world of PHAs covering its major aspects, namely its chemical nature and structure, biosynthesis, various methods of screening of potential PHA producing bacteria along with properties, several techniques used for its recovery and further characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jacquel N, Lo CW, Wu HS, Wei YH, Wang SS (2007) Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. AIChE J 53(10):2704–2714

    Article  CAS  Google Scholar 

  2. Muthusamy MS, Pramasivam S (2017) Bioplastics–an eco-friendly alternative to petrochemical plastics. Curr World Environ 14(1):49

    Article  Google Scholar 

  3. Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, Hesko O, Kucera D, Marova I, Obruca S (2018) Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 102(4):1923–1931

    Article  CAS  PubMed  Google Scholar 

  4. Shah K (2014) Original research article optimization and production of Polyhydroxybutarate (PHB) by Bacillus subtilis G1S1from soil. Int J Curr Microbiol App Sci 3(5):377–387

    Google Scholar 

  5. Ostle AG, Holt J (1982) Nile blue a as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171(2):73–80

    Article  CAS  PubMed  Google Scholar 

  7. Manju J, Prabakaran P (2015) Comparative study on screening methods of polyhydroxybutyrate (PHB) producing bacteria’s isolated from root nodules of selected leguminous plants. Int J Eng Sci Invent 4(11):23–28

    Google Scholar 

  8. Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomat 2013:1–10

    Article  Google Scholar 

  9. Muhammadi S, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Article  Google Scholar 

  10. Sheu D-S, Wang Y-T, Lee C-Y (2000) Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146(8):2019–2025

    Article  CAS  PubMed  Google Scholar 

  11. Sujatha K, Mahalakshmi A, Shenbagarathai R (2005) A study on accumulation of PHB in native Pseudomonas isolates LDC-5 and LDC-25. Indian J Biotechnol 4(2):216–221

    CAS  Google Scholar 

  12. Ciesielski S, Cydzik-Kwiatkowska A, Pokoj T, Klimiuk E (2006) Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J Appl Microbiol 101(1):190–199

    Article  CAS  PubMed  Google Scholar 

  13. Hong K, Sun S, Tian W, Chen G, Huang W (1999) A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Appl Microbiol Biotechnol 51(4):523–526

    Article  CAS  Google Scholar 

  14. Chandrashekharaiah P (2005) Isolation, screening and selection of efficient poly-Β-Hydroxybutyrate (Phb) synthesizing Bacteria. Master’s Thesis, Dharwad University Of Agricultural Sciences, Karnataka, India

  15. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326

    Article  CAS  PubMed  Google Scholar 

  16. Yu J (2007) Microbial production of bioplastics from renewable resources. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. Elsevier, Dublin, pp 585–610

    Chapter  Google Scholar 

  17. Tan G-YA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706–754

    Article  Google Scholar 

  18. Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Prog 34(1):29–41

    Article  CAS  PubMed  Google Scholar 

  19. Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  20. Prados E, Maicas S (2016) Bacterial production of hydroxyalkanoates (PHA). Univ J Microbiol Res 4(1):23–30

    Article  CAS  Google Scholar 

  21. Divya G, Archana T, Manzano R (2013) Polyhydroxy alkanoates—a sustainable alternative to petro-based plastics. J Pet Environ Biotechnol 4(143):1–8

    Google Scholar 

  22. Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97

    PubMed  Google Scholar 

  23. Saharan B, Ankita SD (2012) Bioplastics-for sustainable development: a review. Int J Microbial Res Technol 1:11–23

    Google Scholar 

  24. Grumezescu AM, Butu A (2017) AMH AMG (ed) Food packaging and preservation, vol 9. Academic Press, San Diego, p 588

    Google Scholar 

  25. Ong SY, Chee JY, Sudesh K (2017) Degradation of polyhydroxyalkanoate (PHA): a review. J Siberian Fed Univ 10(2):211–225

    Google Scholar 

  26. Kumaravel S, Hema R, Lakshmi R (2010) Production of polyhydroxybutyrate (bioplastic) and its biodegradation by Pseudomonas lemoignei and Aspergillus Niger. J Chem 7(S1):S536–S542

    CAS  Google Scholar 

  27. Singh Saharan B, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese J Biol 2014

  28. Singh AK, Mallick N (2017) Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett 364(20)

  29. Matias F, Bonatto D, Padilla G, Rodrigues MFDA, Henriques JAP (2009) Polyhydroxyalkanoates production by actinobacteria isolated from soil. Can J Microbiol 55(7):790–800

    Article  CAS  PubMed  Google Scholar 

  30. Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76(23):7811–7819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Safak S, Mercan N, Aslim B, Beyatli Y (2002) A study on the production of poly-β-hydroxybutyrate by some eukaryotic microorganisms. Turk Electr J Biotechnol 1:11–17

    Google Scholar 

  32. Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146

    Article  CAS  PubMed  Google Scholar 

  33. Haddadi M, Asadolahi R, Negahdari B (2019) The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review. Int J Environ Sci Technol (Tehran):1–14

  34. Hasan D, Rezani S, Shohreh T, Saeid M (2015) Polyhydroxyalkanoates (PHAs), intracellular pathways and properties. Curr World Environ 1(10):644–649

    Google Scholar 

  35. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Del Rev 53(1):5–21

    Article  CAS  Google Scholar 

  36. Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14(5):475–483

    Article  CAS  PubMed  Google Scholar 

  37. Rivera-Terceros P, Tito-Claros E, Torrico S, Carballo S, Van-Thuoc D, Quillaguamán J (2015) Production of poly (3-hydroxybutyrate) by Halomonas boliviensis in an air-lift reactor. J Biol Res Thessaloniki 22(1):1–9

    Article  Google Scholar 

  38. Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA (2013) Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz J Microbiol 44(2):539–549

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) The biosynthesis and characterization of poly (β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22(3):1106–1115

    Article  CAS  Google Scholar 

  40. Getachew A, Woldesenbet F (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes 9(1):509

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sharma M, Harish K (2015) Isolation and culture conditions optimization for PHB production by Pseudochrobactrum asaccharolyticum. IJSR 4:1895–1901

    Google Scholar 

  42. Godbole S (2016) Methods for identification, quantification and characterization of polyhydroxyalkanoates-a review. Int J Bioassays 5(4):2016

    Article  Google Scholar 

  43. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Mol Biol Rev 54(4):450–472

    CAS  Google Scholar 

  44. Karr DB, Waters JK, Emerich DW (1983) Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46(6):1339–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grubelnik A, Wiesli L, Furrer P, Rentsch D, Hany R, Meyer VR (2008) A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates. J Sep Sci 31(10):1739–1744

    Article  CAS  PubMed  Google Scholar 

  46. Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6(1):29–37

    Article  CAS  Google Scholar 

  47. Girdhar M, Sharma A, Mohan A (2014) Enhancement of commercial production of polymeric PHB material from bacterial strains through mutagenic strategies. Biosci Biotechnol Res ASIA 11(3):1591–1599

    Article  Google Scholar 

  48. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A (2013) PHA recovery from biomass. Biomacromolecules 14(9):2963–2972

    Article  CAS  PubMed  Google Scholar 

  49. Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J 39(1):15–27

    Article  CAS  Google Scholar 

  50. Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly [(R)-3-hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Eng Life Sci 13(6):549–562

    Article  CAS  Google Scholar 

  51. Horowitz DM, Brennan EM (2002) Method of decolorizing or deodorizing polyhydroxyalkanoates from biomass with ozone. 6,368,836,

  52. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21(6):665–674

    Article  CAS  Google Scholar 

  53. Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24

    Article  CAS  Google Scholar 

  54. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology (N Y) 13(2):142

    CAS  Google Scholar 

  55. Brandi H, Bachofen R, Mayer J, Wintermantel E (1995) Degradation and applications of polyhydroxyalkanoates. Can J Microbiol 41(13):143–153

    Article  Google Scholar 

  56. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59(10):3233–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14

    Article  CAS  PubMed  Google Scholar 

  58. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 82(3):233–247

    CAS  Google Scholar 

  59. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56(1):403–432

    Article  CAS  PubMed  Google Scholar 

  60. Jendrossek D, Schirmer A, Schlegel H (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46(5–6):451–463

    Article  CAS  PubMed  Google Scholar 

  61. Saito Y, Doi Y (1994) Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol 16(2):99–104

    Article  CAS  PubMed  Google Scholar 

  62. Kumar S, Thakur K (2017) Bioplastics-classification, production and their potential food applications. J Hill Agric 8(2):118–129

    Article  Google Scholar 

  63. Volova T, Gladyshev M, Trusova MY, Zhila N (2006) Degradation of polyhydroxyalkanoates and the composition of microbial destructors under natural conditions. Microbiology 75(5):593–598

    Article  CAS  Google Scholar 

  64. Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013:1–12

    Article  Google Scholar 

  65. Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Indust 1(1):52–60

    Google Scholar 

  66. Mathuriya AS, Yakhmi J (2017) Polyhydroxyalkanoates: biodegradable plastics and their applications. Handbook of Ecomaterials:1–29

  67. Kavitha G, Rengasamy R, Inbakandan D (2018) Polyhydroxybutyrate production from marine source and its application. Int J Biol Macromol 111:102–108

    Article  PubMed  Google Scholar 

  68. Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23(2):362

    Article  PubMed Central  Google Scholar 

  69. Chen G-Q, Zhang J (2018) Microbial polyhydroxyalkanoates as medical implant biomaterials. Artif Cells Nanomed Biotechnol 46(1):1–18

    Article  CAS  PubMed  Google Scholar 

  70. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808

    Article  Google Scholar 

  71. Poltronieri P, Kumar P (2017) Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials:1–30

  72. Yeo JCC, Muiruri JK, Thitsartarn W, Li Z, He C (2018) Recent advances in the development of biodegradable PHB-based toughening materials: approaches, advantages and applications. Mater Sci Eng C 92:1092–1116

    Article  CAS  Google Scholar 

  73. Zhang M, Thomas NL (2010) Preparation and properties of polyhydroxybutyrate blended with different types of starch. J Appl Polym Sci 116(2):688–694

    CAS  Google Scholar 

  74. Lim J, Chong MSK, Teo EY, Chen GQ, Chan JK, Teoh SH (2013) Biocompatibility studies and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/polycaprolactone blends. J Biomed Mater Res B Appl Biomater 101(5):752–761

    Article  PubMed  Google Scholar 

  75. Khosravi-Darani K, Bucci D (2015) Application of poly (hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29(2):275–285

    Article  CAS  Google Scholar 

  76. Gassner F, Owen A (1996) Some properties of poly (3-hydroxybutyrate)–poly (3-hydroxyvalerate) blends. Polym Int 39(3):215–219

    Article  CAS  Google Scholar 

  77. Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mat 8(4):e265

    Article  CAS  Google Scholar 

  78. Chiono V, Ciardelli G, Vozzi G, Sotgiu MG, Vinci B, Domenici C, Giusti P (2008) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (ϵ-caprolactone) blends for tissue engineering applications in the form of hollow fibers. J Biomed Mat Res Part A Off J Soc Biomat, Jpn Soc Biomat, Aus Soc Biomat Korean Soc Biomat 85(4):938–953

    Google Scholar 

  79. Yadav A, Mangaraj S, Singh R, Kumar N, Arora S (2018) Biopolymers as packaging material in food and allied industry. Int J Chem Stud 6(2):2411–2418

    Google Scholar 

  80. Tripathi AD, Raj Joshi T, Kumar Srivastava S, Darani KK, Khade S, Srivastava J (2019) Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging. Prep Biochem Biotechnol 49(6):567–577

    Article  CAS  PubMed  Google Scholar 

  81. Liu L (2006) Bioplastics in food packaging: innovative technologies for biodegradable packaging. San Jose State Univ Pack Eng 13:1348–1368

    Google Scholar 

  82. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141

    Article  CAS  Google Scholar 

  83. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34(1):58–69

    Article  CAS  PubMed  Google Scholar 

  84. Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD (2017) Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 10(6):1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang J, Shishatskaya EI, Volova TG, da Silva LF, Chen G-Q (2018) Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater Sci Eng C 86:144–150

    Article  CAS  Google Scholar 

  86. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I (2015) Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 90(7):1209–1221

    Article  CAS  Google Scholar 

  87. Wu Q, Wang Y, Chen G-Q (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells, Blood Substitutes, Biotechnol 37(1):1–12

    Article  Google Scholar 

  88. Mukheem A, Hossain M, Shahabuddin S, Muthoosamy K, Manickam S, Sudesh K, Saidur R, Sridewi N, Campus NM (2018) Bioplastic Polyhydroxyalkanoate (PHA): recent advances in modification and medical applications

  89. Okun MS, Boothby LA, Bartfield RB, Doering PL (2001) GHB: an important pharmacologic and clinical update. J Pharm Pharm Sci 4(2):167–175

    CAS  PubMed  Google Scholar 

  90. Utsunomia C, Ren Q, Zinn M (2020) Poly (4-Hydroxybutyrate): current state and perspectives. Front Bioeng Biotechnol 8:257

    Article  PubMed  PubMed Central  Google Scholar 

  91. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578

    Article  CAS  Google Scholar 

  92. Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013

  93. Li Z, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44(10):2865–2879

    Article  CAS  PubMed  Google Scholar 

  94. Wang J, Chu L (2016) Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol Adv 34(6):1103–1112

    Article  CAS  PubMed  Google Scholar 

  95. Hiraishi A, Khan S (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61(2):103–109

    Article  CAS  PubMed  Google Scholar 

  96. Liu F, Li J, Zhang X (2019) Bioplastic production from wastewater sludge and application. In: IOP Conference Series: Earth and Environmental Science, 2019. vol 1. IOP Publishing, p 012071

  97. Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2007) Synthesis of polyhydroxyalkanoates in municipal wastewater treatment. Water Environ Res 79(12):2396–2403

    Article  CAS  PubMed  Google Scholar 

  98. Basset N, Katsou E, Frison N, Malamis S, Dosta J, Fatone F (2016) Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line. Bioresour Technol 200:820–829

    Article  CAS  PubMed  Google Scholar 

  99. Lam W, Wang Y, Chan PL, Chan SW, Tsang YF, Chua H, Yu PHF (2017) Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Environ Technol 38(13–14):1779–1791

    Article  CAS  PubMed  Google Scholar 

  100. Grancarić AM, Jerković I, Tarbuk A (2013) Bioplastics in textiles. Polimeri 34(1):9

    Google Scholar 

  101. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38(8):2434–2446

    Article  CAS  PubMed  Google Scholar 

  102. Liu F, Li J, Zhang X (2019) Bioplastic production from wastewater sludge and application. IOP Conf Series Earth Environ Sci 344(1):012071

    Article  Google Scholar 

  103. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6(2):561–565

    Article  CAS  PubMed  Google Scholar 

  104. Amelia TSM, Govindasamy S, Tamothran AM, Vigneswari S, Bhubalan K (2019) Applications of PHA in agriculture. In: Kalia VC (ed) Biotechnological applications of Polyhydroxyalkanoates. Springer, Singapore, pp 347–361

    Chapter  Google Scholar 

  105. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529

    Article  CAS  Google Scholar 

  106. Solaiman DK, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and coproducts into poly (hydroxyalkanoates). Appl Microbiol Biotechnol 71(6):783–789

    Article  CAS  PubMed  Google Scholar 

  107. Cinelli P, Coltelli MB, Signori F, Morganti P, Lazzeri A (2019) Cosmetic packaging to save the environment: future perspectives. Cosmetics 6(2):26

    Article  CAS  Google Scholar 

  108. Sudesh K, Loo CY, Goh LK, Iwata T, Maeda M (2007) The oil-absorbing property of polyhydroxyalkanoate films and its practical application: a refreshing new outlook for an old degrading material. Macromol Biosci 7(11):1199–1205

    Article  CAS  PubMed  Google Scholar 

  109. Gao X, Chen J-C, Wu Q, Chen G-Q (2011) Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 22(6):768–774

    Article  CAS  PubMed  Google Scholar 

  110. Snell KD, Peoples OP (2009) PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels, Bioproducts and Biorefining Innov Sustain Econ 3(4):456–467

    Article  CAS  Google Scholar 

  111. Wei D-X, Chen C-B, Fang G, Li S-Y, Chen G-Q (2011) Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl Microbiol Biotechnol 91(4):1037–1047

    Article  CAS  PubMed  Google Scholar 

  112. Ong SY, Chee JY, Sudesh K (2017) Degradation of polyhydroxyalkanoate (PHA): a review

  113. Aditi S, D’Souza Shalet NM, Pranesh R, Katyayini T (2015) Microbial production of polyhydroxyalkanoates (PHA) from novel sources: a review. Int J Res Biosci 4:16–28

    Google Scholar 

  114. Poltronieri P (2018) Polyhydroxyalkanoate production in biofermentor monitored through biosensor application. Int J Biosen Bioelectron 4(5):235–240

    Google Scholar 

  115. Chen G-Q, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67(5):592–599

    Article  CAS  PubMed  Google Scholar 

  116. Chee J-Y, Yoga S-S, Lau N-S, Ling S-C, Abed RM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. Curr Res Technol Educ Topics Appl Microbiol Microbial Biotechnol 2:1395–1404

    Google Scholar 

  117. Arora A, Padua GW (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  PubMed  Google Scholar 

  118. Dhingra HK, Priya K (2013) Physiological and molecular identification of polyhydroxybutyrates (PHB) producing microorganisms isolated from root nodules of leguminous plants. Afr J Microbiol Res 7(30):3961–3967

    CAS  Google Scholar 

  119. Mascarenhas J, Aruna K (2017) Screening of polyhydroxyalkonates (PHA) accumulating bacteria from diverse habitats. J Global Biosci 6:4835–4848

    Google Scholar 

  120. Lasemi Z, Darzi GN, Baei MS (2013) Media optimization for poly (β-hydroxybutyrate) production using Azotobacter Beijerinckii. Int J Polym Mater Polym Biomater 62(5):265–269

    Article  CAS  Google Scholar 

  121. Singh G, Kumari A, Mittal A, Yadav A, Aggarwal NK (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. Biomed Res Int 2013:1–10

    Google Scholar 

  122. Mercan N, Beyatli Y (2005) Production of poly-beta-hydroxybutyrate (PHB) by rhizobium meliloti, R-viciae and Bradyrhizobium japonicum with different carbon and nitrogen sources, and inexpensive substrates. Zuckerindustrie 130(5):410–415

    CAS  Google Scholar 

  123. Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP (2004) Production and characterization of poly-β-hydroxyalkanoate copolymers from Burkholderiacepacia utilizing xylose and Levulinic acid. Biotechnol Prog 20(6):1697–1704

    Article  CAS  PubMed  Google Scholar 

  124. Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147(12):3353–3358

    Article  CAS  PubMed  Google Scholar 

  125. Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gaillard J-L, Corroler D (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116(3):302–308

    Article  CAS  PubMed  Google Scholar 

  126. Gomaa EZ (2014) Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz Arch Biol Technol 57(1):145–154

    Article  CAS  Google Scholar 

  127. Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  128. Quillaguaman J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly (β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99(1):151–157

    Article  CAS  PubMed  Google Scholar 

  129. Kulkarni S, Kanekar P, Nilegaonkar S, Sarnaik S, Jog J (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate)(PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India. Bioresour Technol 101(24):9765–9771

    Article  CAS  PubMed  Google Scholar 

  130. Biswas A, Patra A, Paul A (2009) Production of poly-3-hydroxyalkanoic acids by a moderately halophilic bacterium, Halomonas marina HMA 103 isolated from solar saltern of Orissa, India. Acta Microbiol Immunol Hung 56(2):125–143

    Article  CAS  PubMed  Google Scholar 

  131. Koller M, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7(2):218–226

    Article  CAS  PubMed  Google Scholar 

  132. Bourque D, Pomerleau Y, Groleau D (1995) High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44(3–4):367–376

    Article  CAS  Google Scholar 

  133. Smit A-M, Strabala TJ, Peng L, Rawson P, Lloyd-Jones G, Jordan TW (2012) Proteomic phenotyping of Novosphingobium nitrogenifigens reveals a robust capacity for simultaneous nitrogen fixation, polyhydroxyalkanoate production, and resistance to reactive oxygen species. Appl Environ Microbiol 78(14):4802–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yamane T, Chen X, Ueda S (1996) Growth-associated production of poly (3-Hydroxyvalerate) from n-Pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Appl Environ Microbiol 62(2):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jau M-H, Yew S-P, Toh PS, Chong AS, Chu W-L, Phang S-M, Najimudin N, Sudesh K (2005) Biosynthesis and mobilization of poly (3-hydroxybutyrate)[P (3HB)] by Spirulina platensis. Int J Biol Macromol 36(3):144–151

    Article  CAS  PubMed  Google Scholar 

  136. Abdel-Rahman MA, Desouky SE-S, Azab MS, Esmael ME (2017) Fermentative production of polyhydroxyalkanoates (PHAs) from glycerol by Zobellella taiwanensis Azu-IN1. J Appl Biol Biotechnol 5(05):16–25

    CAS  Google Scholar 

  137. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634

    Article  Google Scholar 

  138. Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules 16(3):1040–1049

    Article  CAS  PubMed  Google Scholar 

  139. Verhoogt H, Ramsay B, Favis B (1994) Polymer blends containing poly (3-hydroxyalkanoate) s. Polymer 35(24):5155–5169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the teaching and non-teaching staff of the Department of Microbiology and Biotechnology (Gujarat University) for the preparation of this manuscript. The authors would also like to appreciate the assistance provided by Mr. Rohit Patel at revision stage.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

KP and RN have written the manuscript. AS and DG suggested changes and rearrangement of the manuscript. PP contributed in Figure designing whereas MS reviewed the manuscript.

Corresponding author

Correspondence to Meenu Saraf.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest in this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, K., Nayak, R., Shukla, A. et al. Polyhydroxyalkanoates: An Exotic Gleam in the Gloomy Tale of Plastics. J Polym Environ 29, 2013–2032 (2021). https://doi.org/10.1007/s10924-020-02025-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02025-x

Keywords

Navigation