Skip to main content
Log in

Reactive oxygen species derived from NADPH oxidase regulate astaxanthin and total fatty acid accumulation in Chromochloris zofingiensis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Many abiotic stresses can promote astaxanthin and total fatty acid (TFA) accumulation in microalgae, but their signal molecules remain undetermined. The reactive oxygen species (ROS) derived from NADPH oxidase has been reported to act as signals and regulate many cellular responses in cell responses to biotic and abiotic stresses in higher plants. The present study explored the regulatory effects of NADPH oxidase derived ROS on astaxanthin and TFA accumulation in the green alga Chromochloris zofingiensis under nitrogen starvation. Diphenylene iodonium (DPI) inhibition of NADPH oxidase significantly decreased the cellular ROS level under nitrogen starvation. This was accompanied with the decreasing of astaxanthin and secondary carotenoids content, and the increasing of primary carotenoids content. Molecular studies showed that DPI depressed the expression of PSY, LCYb, and BKT, but elevated that of LCYe, which were coordinated with carotenoids content. Meanwhile, the TFA and neutral lipid contents, and the expression of their key biosynthesis genes, ACCase and PDAT, were also reduced in the DPI-treated cells. Additionally, the addition of ROS scavenger, N-acetylcysteine (NAC), decreased the astaxanthin and TFA contents. Taken together, our results revealed that NADPH oxidase-derived ROS was the key regulator in astaxanthin and fatty acid accumulation under nitrogen starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savoure A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol 208:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Chen TP, Liu J, Guo BB, Ma XN, Sun PP, Liu B, Chen F (2015) Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis. Sci Rep 5:14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordero BF, Couso I, Leon R, Rodriguez H, Vargas MA (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microbiol Biotechnol 91:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero BF, Couso I, Leon R, Rodriguez H, Vargas MA (2012) Isolation and characterization of a lycopene epsilon-cyclase gene of Chlorella (chromochloris) zofingiensis. Regulation of the Carotenogenic Pathway by Nitrogen and Light. Mar Drugs 10(9):2069–2088

  • Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immun Meth 265:49–72

    Article  CAS  Google Scholar 

  • Fazeli MR, Tofighi H, Samadi N, Jamalifar H (2006) Effects of salinity on ß-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran. Bioresour Technol 97:2453–2456

    Article  CAS  PubMed  Google Scholar 

  • Finkel ZV, Follows MJ, Liefer JD, Brown CM, Benner I, Irwin AJ (2016) Phylogenetic diversity in the macromolecular composition of microalgae. PLoS One 11:e0155977

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Chaiboonchoe A, Khraiwesh B, Nelson DR, Al-Khairy D, Mystikou A, Alzahmi A, Salehi-Ashtiani K (2016) Algal cell factories: approaches, applications, and potentials. Mar Drugs 14:225

    Article  PubMed Central  Google Scholar 

  • Gu N, Lin Q, Li G, Tan YH, Huang LM, Lin JD (2012) Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng Life Sci 12:631–637

    Article  CAS  Google Scholar 

  • Hu ZY, Li YT, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376

    Article  CAS  Google Scholar 

  • Huang J, Zhong Y, Sandmann G, Liu J, Chen F (2012) Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691–699

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Wang Y, Sandmann G, Chen F (2006) Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479

    Article  CAS  PubMed  Google Scholar 

  • Huerlimann R, Heimann K (2013) Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotech 33:49–65

    Article  CAS  Google Scholar 

  • Ip P-F, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Jia SJ, Jiang DJ, Hu CP, Zhang XH, Deng HW, Li YJ (2006) Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine levelby the NADPH oxidase pathway in endothelial cells. Vasc Pharmacol 44(3):143–148

    Article  CAS  Google Scholar 

  • Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol Bioproc Eng 8:322–330

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356

    Article  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lao YM, Jin H, Zhou J, Zhang HJ, Cai ZH (2017) Functional characterization of a missing branch component in Haematococcus pluvialis for control of algal carotenoid biosynthesis. Front Plant Sci 8:1341

  • Li J, Zhu DL, Niu JF, Shen SD, Wang GC (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574

  • Lin WS, Huang YW, Zhou XD, Ma YF (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharm 217(3):252–259

    Article  CAS  Google Scholar 

  • Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Ma XN, Chen TP, Yang B, Liu J, Chen F (2016) Lipid Production from Nannochloropsis. Mar Drugs 14:61

    Article  PubMed Central  Google Scholar 

  • Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives - A mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Mao X, Wu T, Sun D, Zhang Z, Chen F (2018) Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour Technol 249:791–798

    Article  CAS  PubMed  Google Scholar 

  • Minyuk G, Sidorov R, Solovchenko A (2020) Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis. J Appl Phycol 32:923–935

    Article  CAS  Google Scholar 

  • Moller IM, Sweetlove LJ (2010) ROS signalling - specificity is required. Trends Plant Sci 15:370–374

    Article  CAS  PubMed  Google Scholar 

  • Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken J-P, Martens DE, Gruppen H, Wijffels RH (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27:125–140

  • Pandey V, Dixit V, Shyam R (2009) Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 235:49–55

    Article  CAS  PubMed  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Moane S, Murray P (2013) Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour Technol 147:23–28

    Article  CAS  PubMed  Google Scholar 

  • Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M (2015) Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res 12:170–181

    Article  Google Scholar 

  • Solovchenko AE (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60:1–13

    Article  CAS  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Zhang Z, Mao X, Wu T, Jiang Y, Liu J, Chen F (2017) Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN Bioresour Technol 228:227–234

    Article  CAS  PubMed  Google Scholar 

  • Sun SY (2010) N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol Therapy 9:109–110

    Article  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Wang XD, Song YN, Liu BL, Hang W, Li RJ, Cui HL, Li RZ, Jia XY (2020) Enhancement of astaxanthin biosynthesis in Haematococcus pluvialis via inhibition of autophagy by 3-methyladenine under high light. Algal Res 50:101991

    Article  Google Scholar 

  • Yoshitomi T, Shimada N, Iijima K, Hashizume M, Yoshimoto K (2019) Polyethyleneimine-induced astaxanthin accumulation in the green alga Haematococcus pluvialis by increased oxidative stress. J Biosci Bioeng 128:751–754

    Article  PubMed  Google Scholar 

  • Zhang J, Liu L, Chen F (2019) Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol 134:976–983

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang JJ, Sun DZ, Lee Y, Chen F (2017) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Technol 224:515–522

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sun D, Zhang Y, Chen F (2019) Glucose triggers cell structure changes and regulates astaxanthin biosynthesis in Chromochloris zofingiensis. Algal Res 39:101455

    Article  Google Scholar 

  • Zhang Z, Sun DZ, Mao XM, Liu J, Chen F (2016) The crosstalk between astaxanthin, fatty acids and reactive oxygen species in heterotrophic Chlorella zofingiensis. Algal Res 19:178–183

    Article  Google Scholar 

  • Zhao YT, Yue CC, Ding W, Li T, Xu JW, Zhao P, Ma HX, Yu XY (2018) Butylated hydroxytoluene induces astaxanthin and lipid production in Haematococcus pluvialis under high-light and nitrogen-deficiency conditions. Bioresour Technol 266:315–321

    Article  CAS  PubMed  Google Scholar 

  • Zhu SN, Huang W, Xu J, Wang ZM, Xu JL, Yuan ZH (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Advanced Talents Incubation Program of the Hebei University (Project No.: 521000981360) and Science and Technology Project of Hebei Education Department (QN2020114).

Author information

Authors and Affiliations

Authors

Contributions

Zhao Zhang and Dongzhe Sun: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft. Zhao Zhang: Funding acquisition, Resources, Supervision, Validation, Writing – review & editing.

Corresponding author

Correspondence to Zhao Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zhang, Z. Reactive oxygen species derived from NADPH oxidase regulate astaxanthin and total fatty acid accumulation in Chromochloris zofingiensis. J Appl Phycol 33, 819–827 (2021). https://doi.org/10.1007/s10811-020-02327-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02327-6

Keywords

Navigation