Skip to main content
Log in

Bidirectional Quantum Teleportation of an Arbitrary Number of Qubits by Using Four Qubit Cluster State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper presents a new bidirectional quantum teleportation (BQT) protocol in which users can simultaneously transmit an arbitrary number of particles to each other via a four-qubit cluster state as quantum channel. With the use of auxiliary qubits and controlled-not gates, transformation circuits are introduced which transform n-qubit states into single superposition state and then teleport them over the channel by using Bell-state measurement and applying a proper Pauli operator. At last, with the aid of another transformation circuit, the initial states can be reconstructed. With this method, the BQT purpose is realized more advantageous compared to recent presented protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997). https://doi.org/10.1038/37539

    Article  ADS  MATH  Google Scholar 

  3. Tian, D., Tao, Y., Qin, M.: Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci. China, Ser. G Physics, Mech. Astron. 51, 1523–1528 (2008). https://doi.org/10.1007/s11433-008-0149-8

    Article  ADS  Google Scholar 

  4. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009). https://doi.org/10.1007/s10773-008-9827-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Tang, S.Q., Shan, C.J., Zhang, X.X.: Quantum teleportation of an unknown two-atom entangled state using four-atom cluster state. Int. J. Theor. Phys. 49, 1899–1903 (2010). https://doi.org/10.1007/s10773-010-0373-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969–1975 (2010). https://doi.org/10.1007/s10773-010-0382-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Nandi, K., Mazumdar, C.: Quantum teleportation of a two Qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014). https://doi.org/10.1007/s10773-013-1928-1

    Article  MATH  Google Scholar 

  8. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-Qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013). https://doi.org/10.1007/s10773-012-1208-5

    Article  MathSciNet  Google Scholar 

  9. Li, Y.H., Nie, L.P.: Bidirectional Controlled Teleportation by Using a Five-Qubit Composite GHZ-Bell State. Int. J. Theor. Phys. 52, 1630–1634 (2013). https://doi.org/10.1007/s10773-013-1484-8

    Article  MathSciNet  Google Scholar 

  10. Yan, A.: Bidirectional controlled teleportation via six-Qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013). https://doi.org/10.1007/s10773-013-1694-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). https://doi.org/10.1007/s10773-014-2065-1

    Article  MATH  Google Scholar 

  12. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2014). https://doi.org/10.1007/s10773-014-2221-7

    Article  MATH  Google Scholar 

  13. Chen, Y.: Bidirectional controlled quantum teleportation by using five-Qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014). https://doi.org/10.1007/s10773-013-1943-2

    Article  MATH  Google Scholar 

  14. Sang, M.H.: Bidirectional Quantum Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 380–383 (2016). https://doi.org/10.1007/s10773-015-2670-7

    Article  MATH  Google Scholar 

  15. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016). https://doi.org/10.1007/s11128-015-1096-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016). https://doi.org/10.1007/s11128-015-1194-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013). https://doi.org/10.1007/s11128-013-0638-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015). https://doi.org/10.1007/s10773-014-2372-6

    Article  MATH  Google Scholar 

  19. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016). https://doi.org/10.1007/s10773-016-3044-5

    Article  MATH  Google Scholar 

  20. Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric Bidirectional Controlled Teleportation by Using Six-qubit Cluster State. Int. J. Theor. Phys. 55, 3008–3016 (2016). https://doi.org/10.1007/s10773-016-2933-y

    Article  MATH  Google Scholar 

  21. Hong, W.Q.: Asymmetric Bidirectional Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 384–387 (2016). https://doi.org/10.1007/s10773-015-2671-6

    Article  MATH  Google Scholar 

  22. Fang, S.H., Jiang, M.: Bidirectional and Asymmetric Controlled Quantum Information Transmission via Five-qubit Brown State. Int. J. Theor. Phys. 56, 1530–1536 (2017). https://doi.org/10.1007/s10773-017-3292-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 ⇔ 2 Qubit teleportation protocol between Alice and bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017). https://doi.org/10.1007/s10773-017-3495-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang, S.: Hui, Jiang, M.: a novel scheme for bidirectional and hybrid quantum information transmission via a seven-Qubit state. Int. J. Theor. Phys. 57, 523–532 (2018). https://doi.org/10.1007/s10773-017-3584-3

    Article  MATH  Google Scholar 

  25. Huo, G.W., Zhang, T.Y., Zha, X.W., Zhang, M.Z.: Controlled asymmetric bidirectional hybrid of remote state preparation and quantum teleportation. Int. J. Theor. Phys. 59, 331–337 (2020). https://doi.org/10.1007/s10773-019-04326-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Schemes for Hybrid Bidirectional Controlled Quantum Communication via Multi-qubit Entangled States. Int. J. Theor. Phys. 57, 443–452 (2018). https://doi.org/10.1007/s10773-017-3577-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-Qubit entangled state. Int. J. Theor. Phys. 57, 28–35 (2018). https://doi.org/10.1007/s10773-017-3537-x

    Article  MATH  Google Scholar 

  28. Du, Z., Li, X., Liu, X.: Bidirectional quantum teleportation with GHZ states and EPR pairs via entanglement swapping. Int. J. Theor. Phys. 59, 622–631 (2020). https://doi.org/10.1007/s10773-019-04355-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Long, Y.X., Shao, Z.L.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Sci. Sin. Phys. Mech. Astron. 49, 099501 (2019). https://doi.org/10.1360/SSPMA-2019-0268

    Article  MATH  Google Scholar 

  30. Zhou, R.G., Qian, C., Ian, H.: Cyclic and bidirectional quantum teleportation via Pseudo multi-Qubit states. IEEE Access. 7, 42445–42449 (2019). https://doi.org/10.1109/ACCESS.2019.2907963

    Article  Google Scholar 

  31. Jiang, S.X., Zhou, R.G., Xu, R., Luo, G.: Cyclic hybrid Double-Channel quantum communication via bell-state and GHZ-state in Noisy environments. IEEE Access. 7, 80530–80541 (2019). https://doi.org/10.1109/ACCESS.2019.2923322

    Article  Google Scholar 

  32. Zhang, W.: Deterministic bidirectional quantum-controlled teleportation with six-qubit maximally entangled state. Mod. Phys. Lett. A. 34, 1–13 (2019). https://doi.org/10.1142/S0217732319502900

    Article  MathSciNet  MATH  Google Scholar 

  33. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-Qubit states by using (2n + 2)-Qubit entangled states as Quantum Channel. Int. J. Theor. Phys. 57, 175–183 (2018). https://doi.org/10.1007/s10773-017-3551-z

    Article  MATH  Google Scholar 

  34. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18, (2019). https://doi.org/10.1007/s11128-019-2456-6

  35. Zhou, R.G., Li, X., Qian, C., Ian, H.: Quantum bidirectional teleportation 2 ↔ 2 or 2 ↔ 3 Qubit teleportation protocol via 6-Qubit entangled state. Int. J. Theor. Phys. 59, 166–172 (2020). https://doi.org/10.1007/s10773-019-04306-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, R.G., Qian, C., Ian, H.: Bidirectional quantum teleportation of two-Qubit state via four-Qubit cluster state. Int. J. Theor. Phys. 58, 150–156 (2019). https://doi.org/10.1007/s10773-018-3919-8

    Article  MATH  Google Scholar 

  37. Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-Qubit state by using GHZ states. Int. J. Theor. Phys. 58, 3594–3601 (2019). https://doi.org/10.1007/s10773-019-04223-3

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional Controlled Quantum Teleportation in the Three-dimension System. Int. J. Theor. Phys. 57, 2233–2240 (2018). https://doi.org/10.1007/s10773-018-3748-9

    Article  MathSciNet  MATH  Google Scholar 

  39. He, Y.H., Lu, Q.C., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single Qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54, 1726–1736 (2015). https://doi.org/10.1007/s10773-014-2374-4

    Article  MATH  Google Scholar 

  40. Sang, M.H.: Bidirectional Quantum Teleportation by Using Five-qubit Cluster State. Int. J. Theor. Phys. 55, 1333–1335 (2016). https://doi.org/10.1007/s10773-015-2774-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-Qubit state by using eight-Qubit entangled state as a Quantum Channel. Int. J. Theor. Phys. 56, 2101–2112 (2017). https://doi.org/10.1007/s10773-017-3353-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Aghababa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemikhah, P., Aghababa, H. Bidirectional Quantum Teleportation of an Arbitrary Number of Qubits by Using Four Qubit Cluster State. Int J Theor Phys 60, 378–386 (2021). https://doi.org/10.1007/s10773-020-04704-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04704-w

Keywords

Navigation