Skip to main content

Advertisement

Log in

Testing the short-term effects of a fish invader on the trophic ecology of a closely related species

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of invaders on native species are usually tested using species mean trait values over long time scales. However, considering individual variation over short timescales can help us better understand the interaction between invaders and native species. We compared trophic traits of the non-native guppy (Poecilia reticulata) and the native Brazilian poeciliid Phalloceros harpagos using experiments simulating the early stages of an invasive process. We used short-term mesocosms to simulate an early invasion scenario, where the two species were placed together, and a pre-invasion scenario, where species were kept separated, and analyzed interspecific and intraspecific trophic variability. We also compared the foraging efficiency of species in laboratory experiments. We found no differences on the mean diet of both species between pre and early invasion treatments. At the individual level, in the early invasion scenario, individuals of both species reduced their trophic niche as a probable effect of the presence of the heterospecific. Phalloceros harpagos had higher consumption rates than guppies indicating greater efficiency in feeding on invertebrates. Our results suggest that non-native species were not intrinsically better consumers of high-quality resources. Instead, intraspecific variation might be playing an overlooked role in shaping interactions between species during the early stages of invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbey-Lee, R. N., E. E. Gaiser & J. C. Trexler, 2013. Relative roles of dispersal dynamics and competition in determining the isotopic niche breadth of a wetland fish. Freshwater Biology 58: 780–792.

    Article  Google Scholar 

  • Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F. Boucher, P. Saccone & S. Lavorel, 2010. Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology 98: 604–613.

    Article  Google Scholar 

  • Alexander, M. E., J. T. A. Dick, O. L. F. Weyl, T. B. Robinson & D. M. Richardson, 2014. Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biology Letters 10: 2–6.

    Article  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.

    Google Scholar 

  • Araújo, M. S., D. I. Bolnick & C. A. Layman, 2011. The ecological causes of individual specialisation. Ecology Letters 14: 948–958.

    Article  PubMed  Google Scholar 

  • Azevedo-Santos, V. M., J. R. S. Vitule, F. M. Pelicice, E. García-Berthou & D. Simberloff, 2017. Non-native fish to control Aedes mosquitoes: A controversial, harmful tool. BioScience 67: 84–90.

    Article  Google Scholar 

  • Bašić, T., G. H. Copp, V. R. Edmonds-Brown, E. Keskin, P. I. Davison & J. R. Britton, 2019. Trophic consequences of an invasive, small-bodied non-native fish, sunbleak Leucaspius delineatus, for native pond fishes. Biological Invasions 21: 261–275.

    Article  Google Scholar 

  • Bassar, R. D., M. C. Marshall, A. Lopez-Sepulcre, E. Zandonà, S. K. Auer, J. Travis, C. M. Pringle, A. S. Flecker, S. A. Thomas, D. F. Fraser & D. N. Reznick, 2010. Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences 107: 3616–3621.

    Article  CAS  Google Scholar 

  • Bates, D., M. Mächler, B. M. Bolker & S. C. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 103712.

    Article  Google Scholar 

  • Begon, M. & R. Wall, 1987. Individual variation and competitor coexistence: A model. Functional Ecology 1: 237.

    Article  Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.

    Article  PubMed  Google Scholar 

  • Błońska, D., J. Grabowska, J. Kobak, L. Jermacz & K. acela-Spychalska, 2015. Feeding preferences of an invasive Ponto-Caspian goby for native and non-native gammarid prey. Freshwater Biology 60: 2187–2195.

    Article  Google Scholar 

  • Bøhn, T., O. T. Sandlund, P. A. Amundsen & R. Primicerio, 2004. Rapidly changing life history during invasion. Oikos 106: 138–150.

    Article  Google Scholar 

  • Bøhn, T., P.-A. Amundsen & A. Sparrow, 2008. Competitive exclusion after invasion? Biological Invasions 10: 359–368.

    Article  Google Scholar 

  • Bolnick, D. I., L. H. Yang, J. A. Fordyce, J. M. Davis & R. Svanbäck, 2002. Measuring individual-level resource specialization. Ecology 83: 2936–2941.

    Article  Google Scholar 

  • Bolnick, D. I., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Hulsey & M. L. Forister, 2003. The ecology of individuals: Incidence and implications of individual specialization. The American Naturalist 161: 1–28.

    Article  PubMed  Google Scholar 

  • Bolnick, D. I., T. Ingram, W. E. Stutz, L. K. Snowberg, O. L. Lau & J. S. Pauli, 2010. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B 277: 1789–1797.

    Article  PubMed  PubMed Central  Google Scholar 

  • Britton, J. R., C. Gutmann Roberts, F. Amat Trigo, E. T. Nolan & V. De Santis, 2019. Predicting the ecological impacts of an alien invader: Experimental approaches reveal the trophic consequences of competition. Journal of Animal Ecology 88: 1066–1078.

    Article  PubMed  Google Scholar 

  • Caiola, N. & A. De Sostoa, 2005. Possible reasons for the decline of two native toothcarps in the Iberian Peninsula: Evidence of competition with the introduced Eastern mosquitofish. Journal of Applied Ichthyology 21: 358–363.

    Article  Google Scholar 

  • Camacho-Cervantes, M., C. M. Garcia, A. F. Ojanguren & A. E. Magurran, 2014. Exotic invaders gain foraging benefits by shoaling with native fish. Royal Society Open Science 1: 140101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho-Cervantes, M., A. F. Ojanguren & A. E. Magurran, 2015. Exploratory behaviour and transmission of information between the invasive guppy and native Mexican topminnows. Animal Behaviour 106: 115–120.

    Article  Google Scholar 

  • Capps, K. A. & A. S. Flecker, 2015. High impact of low-trophic-position invaders: Nonnative grazers alter the quality and quantity of basal food resources. Freshwater Science 34: 784–796.

    Article  Google Scholar 

  • Carvalho, G. R., P. W. Shaw, L. Hauser, B. H. Seghers & A. E. Magurran, 1996. Artificial introductions, evolutionary change and population differentiation in Trinidadian guppies (Poecilia reticulata: Poeciliidae). Biological Journal of the Linnean Society 57: 219–234.

    Article  Google Scholar 

  • Codron, D., J. Hull, J. S. Brink, J. Codron, D. Ward & M. Clauss, 2011. Effect of competition on niche dynamics of syntopic grazing ungulates: Contrasting the predictions of habitat selection models using stable isotope analysis. Evolutionary Ecology Research 13: 217–235.

    Google Scholar 

  • Core, R. T., & R. Team. 2014. R: A language and Environment for statistical computing. R Foundation for Statistical Computing.

  • Crooks, J. A., 2005. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Écoscience 12: 316–329.

    Article  Google Scholar 

  • de Villemereuil, P. B. & A. López-Sepulcre, 2011. Consumer functional responses under intra- and inter-specific interference competition. Ecological Modelling 222: 419–426.

    Article  Google Scholar 

  • Deacon, A. E., I. W. Ramnarine & A. E. Magurran, 2011. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6: 24416.

    Article  CAS  Google Scholar 

  • Deacon, A. E., M. Barbosa & A. E. Magurran, 2014. Forced monogamy in a multiple mating species does not impede colonisation success. BMC Ecology 14: 1–9.

    Article  Google Scholar 

  • Dick, J. T. A., K. Gallagher, S. Avlijas, H. C. Clarke, S. E. Lewis, S. Leung, D. Minchin, J. Caffrey, M. E. Alexander, C. Maguire, C. Harrod, N. Reid, N. R. Haddaway, K. D. Farnsworth, M. Penk & A. Ricciardi, 2013. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions 15: 837–846.

    Article  Google Scholar 

  • Dick, J. T. A., M. E. Alexander, A. Ricciardi, C. Laverty, P. O. Downey, M. Xu, J. M. Jeschke, W. C. Saul, M. P. Hill, R. Wasserman, D. Barrios-O’Neill, O. L. F. Weyl & R. H. Shaw, 2017. Functional responses can unify invasion ecology. Biological Invasions 19: 1667–1672.

    Article  Google Scholar 

  • Dussault, G. V. & D. L. Kramer, 1981. Food and feeding behavior of the guppy, Poecilia reticulata (Pisces: Poeciliidae). Canadian Journal of Zoology 59: 684–701.

    Article  Google Scholar 

  • Elias, M., M. S. Islam, M. H. Kabir & M. K. Rahman, 1995. Biological control of mosquito larvae by Guppy fish. Bangladesh Medical Research Council Bulletin 21: 81–86.

    CAS  PubMed  Google Scholar 

  • El-Sabaawi, R. W., E. Zandonà, T. J. Kohler, M. C. Marshall, J. M. Moslemi, J. Travis, A. López-Sepulcre, R. Ferriére, C. M. Pringle, S. A. Thomas, D. N. Reznick & A. S. Flecker, 2012. Widespread intraspecific organismal stoichiometry among populations of the Trinidadian guppy. Functional Ecology 26: 666–676.

    Article  Google Scholar 

  • El-Sabaawi, R. W., R. D. Bassar, C. Rakowski, M. C. Marshall, B. L. Bryan, S. N. Thomas, C. Pringle, D. N. Reznick & A. S. Flecker, 2015. Intraspecific phenotypic differences in fish affect ecosystem processes as much as bottom-up factors. Oikos 124: 1181–1191.

    Article  Google Scholar 

  • Esler, K. J., H. Prozesky, G. P. Sharma & M. McGeoch, 2010. How wide is the “knowing-doing” gap in invasion biology? Biological Invasions 12: 4065–4075.

    Article  Google Scholar 

  • Fraser, D. F. & B. A. Lamphere, 2013. Experimental evaluation of predation as a facilitator of invasion success in a stream fish. Ecology 94: 640–649.

    Article  PubMed  Google Scholar 

  • Fugi, R., K. D. G. Luz-Agostinho & A. A. Agostinho, 2008. Trophic interaction between an introduced (peacock bass) and a native (dogfish) piscivorous fish in a Neotropical impounded river. Hydrobiologia 607: 143.

    Article  Google Scholar 

  • Ganassin, M. J. M., A. Frota, C. M. Muniz, M. T. Baumgartner & N. S. Hahn, 2019. Urbanisation affects the diet and feeding selectivity of the invasive guppy Poecilia reticulata. Ecology of Freshwater Fish 29: 1–14.

    Google Scholar 

  • García-Berthou, E., 2007. The characteristics of invasive fishes: What has been learned so far? Journal of Fish Biology 71: 33–55.

    Article  Google Scholar 

  • Gelwick, F. P. & P. B. McIntyre, 2017. Trophic relations of stream fishes. Methods in Stream Ecology 1: 457–479.

    Article  Google Scholar 

  • Gerking, S. D., 1994. Feeding Ecology of Fish. Academic Press Inc, Cambridge.

    Google Scholar 

  • Gibert, J. P. & C. E. Brassil, 2014. Individual phenotypic variation reduces interaction strengths in a consumer–resource system. Ecology and Evolution 4: 3703–3713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibert, J. P. & J. P. DeLong, 2015. Individual variation decreases interference competition but increases species persistence. Advances in Ecological Research 52: 45–64.

    Article  Google Scholar 

  • González-Suárez, M., S. Bacher & J. M. Jeschke, 2015. Intraspecific trait variation is correlated with establishment success of alien mammals. American Naturalist 185: 737–746.

    Article  PubMed  Google Scholar 

  • Gorini-Pacheco, B., E. Zandonà & R. Mazzoni, 2018. Predation effects on matrotrophy, superfetation and other life history traits in Phalloceros harpagos. Ecology of Freshwater Fish 27: 442–452.

    Article  Google Scholar 

  • Grabowska, J., D. Błońska, S. Kati, S. A. Nagy, T. Kakareko, J. Kobak & L. Antal, 2019. Competitive interactions for food resources between the invasive Amur sleeper (Perccottus glenii) and threatened European mudminnow (Umbra krameri). Marine and Freshwater Ecosystems, Aquatic Conservation: 2231–2239.

    Google Scholar 

  • Guo, Z., D. Sheath, F. Amat Trigo & J. R. Britton, 2017. Comparative functional responses of native and high-impacting invasive fishes: impact predictions for native prey populations. Ecology of Freshwater Fish 26: 533–540.

    Article  Google Scholar 

  • Helsen, K., E. Van Cleemput, L. Bassi, B. J. Graae, B. Somers, B. Blonder, & O. Honnay, 2020. Inter‐ and intraspecific trait variation shape multidimensional trait overlap between two plant invaders and the invaded communities. Oikos.06919.

  • Holitzki, T. M., R. A. MacKenzie, T. N. Wiegner & K. J. McDermid, 2013. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams. Ecological Applications 23: 1367–1383.

    Article  PubMed  Google Scholar 

  • Holway, D. A., L. Lach, A. V. Suarez, N. D. Tsutsui & T. J. Case, 2002. The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33: 181–233.

    Article  Google Scholar 

  • Huber, V. & J. Geist, 2019. Reproduction success of the invasive Sinanodonta woodiana (Lea 1834) in relation to native mussel species. Biological Invasions 21: 3451–3465.

    Article  Google Scholar 

  • Human, K. G. & D. M. Gordon, 1996. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105: 405–412.

    Article  PubMed  Google Scholar 

  • Iles, D. T., R. Salguero-Gómez, P. B. Adler & D. N. Koons, 2016. Linking transient dynamics and life history to biological invasion success. Journal of Ecology 104: 399–408.

    Article  Google Scholar 

  • IUCN (2018). Guidelines for invasive species planning and management on islands. Cambridge, UK and Gland, Switzerland: IUCN. viii + 40 pp.

  • Jackson, M. C., J. Grey, K. Miller, J. R. Britton & I. Donohue, 2016. Dietary niche constriction when invaders meet natives: Evidence from freshwater decapods. Journal of Animal Ecology 85: 1098–1107.

    Article  PubMed  Google Scholar 

  • Jung, V., C. Violle, C. Mondy, L. Hoffmann & S. Muller, 2010. Intraspecific variability and trait-based community assembly. Journal of Ecology 98: 1134–1140.

    Article  Google Scholar 

  • Kassambara, A., 2017. ggpubr:“ggplot2” based publication ready plots. R package version 0.1 6:.

  • Latombe, G., P. Pyšek, J. M. Jeschke, T. M. Blackburn, S. Bacher, C. Capinha, M. J. Costello, M. Fernández, R. D. Gregory, D. Hobern, C. Hui, W. Jetz, S. Kumschick, C. McGrannachan, J. Pergl, H. E. Roy, R. Scalera, Z. E. Squires, J. R. U. Wilson, M. Winter, P. Genovesi & M. A. McGeoch, 2017. A vision for global monitoring of biological invasions. Biological Conservation 213: 295–308.

    Article  Google Scholar 

  • Logan, M., 2011. Biostatistical Design and Analysis Using R: A Practical Guide.

  • López-Sepulcre, A., S. P. Gordon, I. G. Paterson, P. Bentzen & D. N. Reznick, 2013. Beyond lifetime reproductive success: the posthumous reproductive dynamics of male Trinidadian guppies. Proceedings of the Royal Society B: Biological Sciences 280: 20131116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magurran, A. E., 2005. The Trinidadian Guppy. Evolutionary Ecology 206.

  • Manna, L. R., C. F. Rezende & R. Mazzoni, 2017. Effect of body size on microhabitat preferences in stream-dwelling fishes. Journal of Applied Ichthyology 33: 193–202.

    Article  Google Scholar 

  • Manna, L. R., S. Villéger, C. F. Rezende & R. Mazzoni, 2019. High intraspecific variability in morphology and diet in tropical stream fish communities. Ecology of Freshwater Fish 28: 41–52.

    Article  Google Scholar 

  • Marques, P. S., L. R. Manna, T. C. Frauendorf, E. Zandonà, R. Mazzoni & R. El-Sabaawi, 2020. Urbanization can increase the invasive potential of alien species. Journal of Animal Ecology 89: 1–11.

    Google Scholar 

  • Mazzoni, R. & J. Lobón-Cerviá, 2008. Longitudinal structure, density and production rates of a neotropical stream fish assemblage: the river Ubatiba in the Serra do Mar, southeast Brazil. Ecography 23: 588–602.

    Article  Google Scholar 

  • Mills, M. D., R. B. Rader & M. C. Belk, 2004. Complex interactions between native and invasive fish: The simultaneous effects of multiple negative interactions. Oecologia 141: 713–721.

    Article  PubMed  Google Scholar 

  • Mofu, L., J. South, R. J. Wasserman, T. Dalu, D. J. Woodford, J. T. A. Dick & O. L. F. Weyl, 2019. Inter-specific differences in invader and native fish functional responses illustrate neutral effects on prey but superior invader competitive ability. Freshwater Biology 64: 1655–1663.

    Article  Google Scholar 

  • Morse, J., A. Baldridge & L. Sargent, 2013. Invasive crayfish Orconectes rusticus (Decapoda, Cambaridae) is a more effective predator of substrate nesting fish eggs than native crayfish (O. virilis). Crustaceana 86: 387–402.

    Article  Google Scholar 

  • Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28: 167–177.

    Article  PubMed  Google Scholar 

  • Mugnai, R., J. L. Nessimian, & D. F. Baptista, 2010. Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Technical Books Editora.

  • Musseau, C., S. Vincenzi, F. Santoul, S. Boulêtreau, D. Jesenšek & A. J. Crivelli, 2020. Within- individual trophic variability drives short-term intraspecific trait variation in natural populations. Journal of Animal Ecology 89: 921–932.

    Article  PubMed  Google Scholar 

  • Neves, M. P., R. L. Delariva & L. L. Wolff, 2015. Diet and ecomorphological relationships of an endemic, species-poor fish assemblage in a stream in the Iguaçu National Park. Neotropical Ichthyology 13: 245–254.

    Article  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, M. H. H. Stevens, M. J. Oksanen & M. Suggests, 2007. The vegan package. Community Ecology Package 10: 631–637.

    Google Scholar 

  • Ovchinnikov, A. N., S. Y. Reznik, M. Y. Dolgovskaya & N. A. Belyakova, 2016. Individual variability in the parameters of growth and development in invasive and autochthonous populations of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Entomological Review 96: 269–273.

    Article  Google Scholar 

  • Palkovacs, E. P., B. A. Wasserman & M. T. Kinnison, 2011. Eco-evolutionary trophic dynamics: Loss of top predators drives trophic evolution and ecology of prey. PLoS ONE 6: 18879.

    Article  CAS  Google Scholar 

  • Petren, K. & T. J. Case, 1996. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77: 118–132.

    Article  Google Scholar 

  • Petrovskii, S., A. Morozov & B. L. Li, 2005. Regimes of biological invasion in a predator–prey system with the Allee effect. Bulletin of Mathematical Biology 67: 637–661.

    Article  PubMed  Google Scholar 

  • Potts, W. M., 1998. A nutritional evaluation of effluent grown algae and zooplakton as feed ingredients for Xiphohorous helleri, Poecilia reticulata and Poecilia velifera (Pisces: Poeciliidae). Rhodes University.

  • Pujol-Buxó, E., G. M. Riaño & G. A. Llorente, 2019. Stable isotopes reveal mild trophic modifications in a native–invasive competitive relationship. Biological Invasions 21: 1167–1177.

    Article  Google Scholar 

  • Reznick, D. A., H. Bryga & J. A. Endler, 1990. Experimentally induced life-history evolution in a natural population. Nature 346: 357–359.

    Article  Google Scholar 

  • Ribeiro, F., B. Elvira, M. J. Collares-Pereira & P. B. Moyle, 2007. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: A first approach. Biological Invasions 10: 89–102.

    Article  Google Scholar 

  • Richardson, D. M., P. Pyšek, M. Rejmánek, M. G. Barbour, F. D. Panetta & C. J. West, 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93–107.

    Article  Google Scholar 

  • Shea, K. & P. Chesson, 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution 17: 170–176.

    Article  Google Scholar 

  • Sokolov, N. P. & M. A. Chvaliova, 1936. Nutrition of Gambusia affinis on the rice fields of Turkestan. The Journal of Animal Ecology 18: 390–395.

    Article  Google Scholar 

  • Sol, D., I. Bartomeus & A. S. Griffin, 2012. The paradox of invasion in birds: Competitive superiority or ecological opportunism? Oecologia 169: 553–564.

    Article  PubMed  Google Scholar 

  • Svanbäck, R. & L. Persson, 2004. Individual diet specialization, niche width and population dynamics: Implications for trophic polymorphisms. Journal of Animal Ecology 73: 973–982.

    Article  Google Scholar 

  • Taylor, C. M. & A. Hastings, 2005. Allee effects in biological invasions. Ecology Letters 8: 895–908.

    Article  Google Scholar 

  • Teresa, F. B., L. Casatti & M. V. Cianciaruso, 2015. Functional differentiation between fish assemblages from forested and deforested streams. Neotropical Ichthyology 13: 361–370.

    Article  Google Scholar 

  • Thomson, D., 2004. Competitive interactions between the invasive european honey bee and native bumble bees. Ecology 85: 458–470.

    Article  Google Scholar 

  • Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences 101: 10854–10861.

    Article  CAS  Google Scholar 

  • Tran, T. N. Q., M. C. Jackson, D. Sheath, H. Verreycken & J. R. Britton, 2015. Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies. Journal of Animal Ecology 84: 1071–1080.

    Article  PubMed  Google Scholar 

  • Van Valen, L., 1965. Morphological variation and width of ecological niche. The American Naturalist 99: 377–390.

    Article  Google Scholar 

  • Vilà, M. & J. Weiner, 2004. Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105: 229–238.

    Article  Google Scholar 

  • Walsh, M. R., D. F. Fraser, R. D. Bassar & D. N. Reznick, 2011. The direct and indirect effects of guppies: Implications for life-history evolution in Rivulus hartii. Functional Ecology 25: 227–237.

    Article  Google Scholar 

  • Warbanski, M. L., P. Marques, T. C. Frauendorf, D. A. T. Phillip & R. W. El-Sabaawi, 2017. Implications of guppy (Poecilia reticulata) life-history phenotype for mosquito control. Ecology and Evolution 7: 3324–3334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward, A. J. W., M. M. Webster & P. J. B. Hart, 2006. Intraspecific food competition in fishes. Fish and Fisheries 7: 231–261.

    Article  Google Scholar 

  • Ward-Campbell, B. M. S., F. W. H. Beamish & C. Kongchaiya, 2005. Morphological characteristics in relation to diet in five coexisting Thai fish species. Journal of Fish Biology 67: 1266–1279.

    Article  Google Scholar 

  • Wickham, H., 2009. Ggplot: using the grammar of graphics with R.

  • Zandonà, E., S. K. Auer, S. S. Kilham, J. L. Howard, A. López-Sepulcre, M. P. O’Connor, R. D. Bassar, A. Osorio, C. M. Pringle & D. N. Reznick, 2011. Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Functional Ecology 25: 964–973.

    Article  Google Scholar 

  • Zandonà, E., C. M. Dalton, R. W. El-Sabaawi, J. L. Howard, M. C. Marshall, S. S. Kilham, D. N. Reznick, J. Travis, T. J. Kohler, A. S. Flecker, S. A. Thomas & C. M. Pringle, 2017. Population variation in the trophic niche of the Trinidadian guppy from different predation regimes. Scientific Reports 7: 1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank field assistants from the Stream Ecology and Fish Ecology labs at the State University of Rio de Janeiro. We also thank Dr. Timothy Moulton and Dr. Jayme Prevedello for their insights about our experimental design and statistical analysis. We thank Dr. Luciano Neves dos Santos and Dr. Fernando Mayer Pelicice for their important contributions to an earlier version of this manuscript. We thank Dr. Andrea Pilastro for his advice on how to interpret our results. We thank the 2 anonymous reviewers for their useful suggestions. This study was financed by individual Grants to RM (FAPERJ/CNE/E-26-202.762/2018, CNPq/Pq1D-301463/2017-4, Prociência UERJ), to EZ (FAPERJ JCNE E-26/203.213/2017, CNPq/Pq2-308261/2017-8, Prociência UERJ), post-doc scholarships to LRM (FAPERJ E-26/202.782/2016; E-26/202.783/2016) and PSM (CAPES-PrInt 88887.369182/2019-00), and MS scholarship to JRA (CAPES - Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Zandonà.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, J.R., Manna, L.R., Mazzoni, R. et al. Testing the short-term effects of a fish invader on the trophic ecology of a closely related species. Hydrobiologia 848, 2305–2318 (2021). https://doi.org/10.1007/s10750-020-04489-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04489-3

Keywords

Navigation