Skip to main content

Advertisement

Log in

Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The influence of permanent magnet materials on the electromagnetic performance of switched-flux permanent magnet (PM) machine having C-core stator assembly is investigated and compared. Both two-dimensional (2D) finite element analysis (FEA) and 3D-FEA are used in predicting the results. Presently, there has not been any study on the performance effect of using a wide range of different types of magnet on C-core switched-flux PM machine. Hence, there is a need for this latest investigation. The considered magnetic materials are: Alnico grade A500, Ferrite grade F5, Neodymium–Iron–Boron (NdFeB) grade N52, and Samarium–cobalt grade S24. The analysis shows that the best electromagnetic performance, including machine efficiency, would be obtained from a given electrical machine when it is equipped with NdFeB magnetic material due to its possession of the highest amount of magnetic remanence, coercive force, and energy product (BH)max. Consequently, the machine having ferrite magnetic material would produce the worst electromagnetic performance, although it is of the lowest cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu X, Li Y, Liu Z, Ling T, Luo Z (2016) Analysis and design of a high power density permanent magnet-assisted synchronous reluctance machine with low-cost ferrite magnets for EVs/HEVs. Int J Comput Math Electr Electron Eng 35(6):1949–1964. https://doi.org/10.1108/COMPEL-05-2016-0233

    Article  Google Scholar 

  2. Petkovska L, Cvetkovski GV (2016) Study of the performance characteristics of a surface permanent magnet motor at various magnetization patterns. Int J Comput Math Electr Electron Eng 35(6):1910–1924. https://doi.org/10.1108/COMPEL-03-2016-0114

    Article  Google Scholar 

  3. Li J, Wang K, Zhang H (2020) Flux-focusing permanent magnet machines with modular consequent-pole rotor. IEEE Trans Ind Electron 67(5):3374–3385. https://doi.org/10.1109/TIE.2019.2922922

    Article  Google Scholar 

  4. Zhu ZQ, Chen JT (2010) Advanced flux-switching permanent magnet brushless machines. IEEE Trans Magn 46(6):1447–1453. https://doi.org/10.1109/TMAG.2010.2044481

    Article  Google Scholar 

  5. Chen JT, Zhu ZQ, Iwasaki S, Deodhar R (2010) Comparison of losses and efficiency in alternate flux-switching permanent magnet machines. In: Proceedings of international conference on electrical machines, Rome. pp 1–6. https://doi.org/10.1109/ICELMACH.2010.5607754

  6. Chen JT, Zhu ZQ, Iwasaki S, Deodhar RP (2011) Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines. IEEE Trans Ind Appl 47(4):1681–1691. https://doi.org/10.1109/TIA.2011.2155011

    Article  Google Scholar 

  7. Zhu ZQ (2011) Switched flux permanent magnet machines—innovation continues. In: Proceedings of international conference on electrical machines and systems, Beijing. pp 1–10. https://doi.org/10.1109/ICEMS.2011.6073317

  8. Chau KT, Li WL, Lee CHT (2012) Challenges and opportunities of electric machines for renewable energy (invited paper). Prog Electromagn Res B 42(7):45–74. https://doi.org/10.2528/PIERB12052001

    Article  Google Scholar 

  9. Fasolo A, Alberti L, Bianchi N (2014) Performance comparison between switching-flux and IPM machines with rare-earth and ferrite PMs. IEEE Trans Ind Appl 50(6):3708–3716. https://doi.org/10.1109/TIA.2014.2319592

    Article  Google Scholar 

  10. Li S, Li Y, Sarlioglu B (2015) Partial irreversible demagnetization assessment of flux-switching permanent magnet machine using ferrite permanent magnet material. IEEE Trans Magn 51(7):1–9. https://doi.org/10.1109/TMAG.2015.2405898

    Article  Google Scholar 

  11. McFarland JD, Jahns TM, EL-Refaie AM, Reddy PB (2014) Effect of magnet properties on power density and flux-weakening performance of high speed interior permanent magnet synchronous machines. In: Proceedings of IEEE energy conversion congress and exposition, Pittsburgh, PA. pp 4218–4225. https://doi.org/10.1109/ECCE.2014.6953975

  12. Galioto SJ, ReddyEL-Refaie PBAM, Alexander JP (2015) Effect of magnet types on performance of high-speed spoke interior-permanent-magnet machines designed for traction applications. IEEE Trans Ind Appl 51(3):2148–2160. https://doi.org/10.1109/TIA.2014.2375380

    Article  Google Scholar 

  13. Magdaleno-Adame S, Cunningham GJ, Miller D, O’Brien S (2019) Calculation of the remnant magnetization and magnetic saturation characteristics for sintered NdFeB permanent magnets utilizing finite element transient simulations. IEEE Trans Magn 55(12):1–9. https://doi.org/10.1109/TMAG.2019.2940426

    Article  Google Scholar 

  14. Tahanian H, Aliahmadi M, Faiz J (2020) Ferrite permanent magnets in electrical machines: opportunities and challenges of a non-rare-earth alternative. IEEE Trans Magn 56(3):1–20. https://doi.org/10.1109/TMAG.2019.2957468

    Article  Google Scholar 

  15. Park E, Jung S, Kim Y (2020) Comparison of magnetic gear characteristics using different permanent magnet materials. IEEE Trans Appl Supercond 30(4):1–4. https://doi.org/10.1109/TASC.2020.2966180

    Article  Google Scholar 

  16. Tang Y, Motoasca E, Paulides JJH, Lomonova EA (2013) Comparison of flux-switching machines and permanent magnet synchronous machines in an in-wheel traction application. Int J Comput Math Electr Electron Eng 32(1):153–165. https://doi.org/10.1108/03321641311293803

    Article  Google Scholar 

  17. Slusarek B, Zakrzewski K (2012) Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature. Electr Rev 88(7b):123–126

    Google Scholar 

  18. Chen Q, Eduku S, Zhao W (2020) A new fault-tolerant switched flux machine with hybrid permanent magnets. CES Trans Electr Mach Syst 4(2):79–86. https://doi.org/10.30941/CESTEMS.2020.00012

    Article  Google Scholar 

  19. Hua W, Cheng M, Jia H, Fu X (2008) Comparative study of flux-switching and doubly-salient PM machines particularly on torque capability. In: Proceedings of IEEE industry applications society annual meeting, Edmonton, Canada. pp 1–8

  20. Barcaro M, Bianchi N (2014) Interior PM machines using ferrite to replace rare-earth surface PM machines. IEEE Trans Ind Appl 50(2):979–985. https://doi.org/10.1109/TIA.2013.2272549

    Article  Google Scholar 

  21. Zhu ZQ, Azar Z (2012) Torque speed characteristics of switched flux permanent magnet machines. Int J Comput Math Electr Electron Eng 31(1):22–39. https://doi.org/10.1108/03321641211184805

    Article  Google Scholar 

  22. Wu S, Guo L, Wang H, Cao Y, Shi T, Xia C (2019) Inductance calculation of interior permanent magnet machines considering asymmetrical saturation of the bridge. IEEE Trans Magn 55(11):1–11. https://doi.org/10.1109/TMAG.2019.2926358

    Article  Google Scholar 

  23. Zhu X, Huang J, Quan L, Xiang Z, Shi B (2019) Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors. IEEE Trans Ind Electron 66(4):2613–2627. https://doi.org/10.1109/TIE.2018.2849961

    Article  Google Scholar 

  24. Awah CC, Zhu ZQ (2016) Influence of rotor pole number on electromagnetic performance of double-stator switched flux PM machines. In: Proceedings of IEEE vehicle power and propulsion conference (VPPC), Hangzhou, China. pp 1–6. https://doi.org/10.1109/VPPC.2016.7791709

  25. Shi Y, Jian L, Wei J, Shao Z, Li W, Chan CC (2016) A new perspective on the operating principle of flux-switching permanent-magnet machines. IEEE Trans Ind Electron 63(3):1425–1437. https://doi.org/10.1109/TIE.2015.2492940

    Article  Google Scholar 

  26. Petrov I, Pyrhönen J (2013) Performance of low-cost permanent magnet material in PM synchronous machines. IEEE Trans Ind Electron 60(6):2131–2138. https://doi.org/10.1109/TIE.2012.2191757

    Article  Google Scholar 

  27. Shao L, Hua W, Dai N, Tong M, Cheng M (2016) Mathematical modeling of a 12-phase flux-switching permanent-magnet machine for wind power generation. IEEE Trans Ind Electron 63(1):504–516. https://doi.org/10.1109/TIE.2015.2461514

    Article  Google Scholar 

  28. Taras P, Li GJ, Zhu ZQ, Foster MP, Stone DA (2019) Combined multiphysics model of switched flux PM machines under fault operations. IEEE Trans Ind Electron 66(9):6737–6745. https://doi.org/10.1109/TIE.2018.2877089

    Article  Google Scholar 

  29. Rosu M, Saitz J, Arkkio A (2005) Hysteresis model for finite-element analysis of permanent-magnet demagnetization in a large synchronous motor under a fault condition. IEEE Trans Magn 41(6):2118–2123. https://doi.org/10.1109/TMAG.2005.84831

    Article  Google Scholar 

  30. Thomas AS, Zhu ZQ, Li GJ (2014) Electromagnetic loss investigation and mitigation in switched flux permanent magnet machines. In: Proceedings of international conference on electrical machines, Berlin. pp 1146–1152. https://doi.org/10.1109/ICELMACH.2014.6960326

  31. Sarigiannidis A, Beniakar M, Kladas A (2018) Computationally efficient permanent magnet traction motor loss assessment. Int J Comput Math Electr Electron Eng 37(6):2093–2108. https://doi.org/10.1108/COMPEL-08-2017-0326

    Article  Google Scholar 

  32. Geest MV, Wolmarans JJ, Polinder H, Ferreira JA, Zeilstra D (2012) Rotor losses in laminated magnets and an anisotropic carbon fiber sleeve. In: Proceedings of the 6th IET international conference on power electronics, machines and drives (PEMD 2012), Bristol. pp 1–6. https://doi.org/10.1049/cp.2012.0282

  33. Alberti L, Fornasiero E, Bianchi N (2012) Impact of the rotor yoke geometry on rotor losses in permanent-magnet machines. IEEE Trans Ind Appl 48(1):98–105. https://doi.org/10.1109/TIA.2011.2175680

    Article  Google Scholar 

Download references

Acknowledgement

I wish to thank the Commonwealth Scholarship Commission, UK, for the sponsorship to run a Ph.D. programme at the University of Sheffield, UK, during which period this research was conceived.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwuemeka Chijioke Awah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awah, C.C. Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine. Electr Eng 103, 1647–1660 (2021). https://doi.org/10.1007/s00202-020-01155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01155-8

Keywords

Navigation