Skip to main content

Advertisement

Log in

Smart scheduling of transmission line switching: optimization of multi-objective microgrid’s day-ahead energy scheduling with considering high penetration of green energies and INVELOX

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In recent years, distributed generation resources, especially renewable energies, have utilized in different situations; to solve the environmental pollution problems and lack of sufficient energies. In this regard, microgrid’s bi-objective energy scheduling and management are considered with INVELOX wind turbine, micro-turbine, boiler, CHP, photovoltaic, wind turbines, and also energy storage systems to enhance the reliability of the network. Moreover, portable resources have been used to manage the demand side. The remarkable innovation of this paper is to control the transmission line circuit breakers, and as a result, control the ecological contamination and microgrid’s cost; by variation in exchangeable power. In this strategy, the microgrid is capable of changing the tie line capacity and achieve the top-selling or buying electricity to/from the power system by switching the circuit breakers (circuit breakers can switch by operator decision or smart devices if required, at all-time intervals). The proposed strategy is modeled as mixed-integer linear programming. All-out expense and ecological contamination of under-study’s microgrid are considered as the objective function. The EPC technique and fuzzy methodology have been used to tackle the problem and select the ideal arrangement and solution, respectively. The outcomes display the improvement of microgrid operation with the presented energy management strategy, so that cost decreased by about 48.76% and 38.6%, in the last two scenarios, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(A\) :

The surface of the turbine vane area (m2)

\(A_{{{\text{IWT}}}}\) :

The surface of the IWT vane area (m2)

\(A^{^{\prime}}\) :

The surface of the portable-IWT vane area (m2)

\(A^{*}\) :

The surface of the portable-WT vane area (m2)

\(E_{{{\text{LD}}}} (t)\) :

Electricity’s demand (kW)

\(E_{S} (t)\) :

The energy of electrical storage (kWh)

\(E_{S}^{\max }\) :

Electrical storage’s maximum energy (kWh)

\(E_{S}^{\min }\) :

Electrical storage’s minimum energy (kWh)

\(F_{{{\text{CHP}}}} (t)\) :

CHP’s aggregate cost ($)

\(F_{{{\text{PV}}}} (t)\) :

PV’s aggregate cost ($)

\(F_{{{\text{PV}}}}^{{{\text{PORT}}}} (t)\) :

Portable-PV’s aggregate cost ($)

\(F_{{{\text{Boiler}}}} (t)\) :

Boiler’s aggregate cost ($)

\(F_{{{\text{MT}}}} (t)\) :

MT’s aggregate cost ($)

\(F_{{{\text{Wind}}}} (t)\) :

WT’s aggregate cost ($)

\(F_{{{\text{IWT}}}} (t)\) :

IWT’s aggregate cost ($)

\(F_{{{\text{IWT}}}}^{{{\text{PORT}}}} (t)\) :

Portable-IWT’s aggregate cost ($)

\(F_{{{\text{WT}}}}^{{{\text{PORT}}}} (t)\) :

Portable-WT’s aggregate cost ($)

\(F_{{{\text{ES}}}} (t)\) :

ES’s aggregate cost ($)

\(F_{{{\text{TS}}}} (t)\) :

TS’s aggregate cost ($)

\(F_{{{\text{Buy}}}} (t)\) :

Buying’s aggregate cost ($)

\(F_{{{\text{Sell}}}} (t)\) :

Selling’s aggregate cost ($)

\(F_{{\text{M-CHP}}}\) :

CHP’s maintenance expenditure ($)

\(F_{{\text{OP-CHP}}}\) :

CHP’s operation expenditure ($/kWh)

\(F_{{\text{OP-WT}}}\) :

WT’s operation expenditure ($/kWh)

\(F_{{\text{OP-IWT}}}\) :

IWT’s operation expenditure ($/kWh)

\(F_{{_{{\text{OP-IWT}}} }}^{{{\text{PORT}}}}\) :

Portable-IWT’s operational expenditure ($/kWh)

\(F_{{_{{\text{OP-WT}}} }}^{{{\text{PORT}}}}\) :

Portable-WT’s operational expenditure ($/kWh)

\(F_{{\text{OP-PV}}}\) :

PV’s operation expenditure ($/kWh)

\(F_{{\text{OP-PV}}}^{{{\text{PORT}}}}\) :

Portable-PV’s operational expenditure ($/kWh)

\(F_{{\text{CONS-WT}}}\) :

WT’s constant expenditure ($)

\(F_{{\text{CONS-IWT}}}\) :

IWT’s constant expenditure ($)

\(F_{{\text{CONS-IWT}}}^{{{\text{PORT}}}}\) :

Portable-IWT’s constant expenditure ($)

\(F_{{\text{CONS-WT}}}^{{{\text{PORT}}}}\) :

Portable-WT’s constant expenditure ($)

\(F_{{\text{CONS-PV}}}\) :

PV’s constant expenditure ($)

\(F_{{\text{CONS-PV}}}^{{{\text{PORT}}}}\) :

Portable-PV’s constant expenditure ($)

\(F_{{\text{M-Boiler}}}\) :

Boiler’s maintenance expenditure ($)

\(F_{{\text{OP-Boiler}}}\) :

Boiler’s operation expenditure ($/kWh)

\(F_{{\text{M-MT}}}\) :

MT’s maintenance expenditure ($)

\(F_{{\text{OP-MT}}}\) :

MT’s operation expenditure ($/kWh)

\(F_{{\text{M-ES}}}\) :

ES’s maintenance expenditure ($)

\(F_{{{\text{Sell}}}}\) :

Selling’s expenditure ($)

\(F_{{{\text{Buy}}}}\) :

Buying’s expenditure ($)

\(F_{{\text{OP-ES}}}\) :

ES’s operation expenditure ($/kWh)

\(F_{{\text{OP-TS}}}\) :

TS’s operation expenditure ($/kWh)

\(F_{{\text{M-TS}}}\) :

TS’s maintenance expenditure ($)

\({\text{GT}}_{{{\text{NOCT}}}}\) :

Solar irradiance’s in NOCT (kW/m2)

\({\text{GT}}_{{{\text{NOCT}}}}^{^{\prime}}\) :

Portable-PV’s solar irradiance in NOCT (kW/m2)

\({\text{GT}}_{{{\text{STC}}}}\) :

STC’s solar irradiance (kW/m2)

\({\text{GT}}_{{{\text{STC}}}}^{^{\prime}}\) :

Portable-PV’s solar irradiance in STC (kW/m2)

\(K_{p}\) :

IWT’s constant factor

\(K_{p}^{^{\prime}}\) :

Portable-IWT’s constant factor

\(M_{\text{Fuel}}\) :

Fuel’s expenditure ($)

\({\text{NOCT}}\) :

Cell’s usual working temperature (°C)

\({\text{NOCT}}^{^{\prime}}\) :

Portable-PV cell’s usual working temperature (°C)

\(N_{{{\text{PVs}}}}\) :

PV’s module number in series form

\(N_{{{\text{PVs}}}}^{^{\prime}}\) :

Portable-PV’s module number in series form

\(N_{{{\text{PVp}}}}\) :

PV’s module number in parallel form

\(N_{{{\text{PVp}}}}^{^{\prime}}\) :

Portable-PV’s module number in parallel form

\({\text{POL}}_{{{\text{CHP}}}}\) :

Pollution of CHP (kg)

\({\text{POL}}_{{{\text{MT}}}}\) :

Pollution of MT (kg)

\({\text{POL}}_{{{\text{Boiler}}}}\) :

Pollution of boiler (kg)

\({\text{POL}}_{{{\text{MG}}}}\) :

Pollution of the main grid (kg)

\({\text{POL}}F_{{{\text{CHP}}}}\) :

CHP’s contamination factor (kg/MWh)

\({\text{POL}}F_{{{\text{MT}}}}\) :

MT’s contamination factor (kg/MWh)

\({\text{POL}}F_{{{\text{Boiler}}}}\) :

Boiler’s contamination factor (kg/MWh)

\({\text{POL}}F_{{{\text{MG}}}}\) :

Main grid’s contamination factor (kg/MWh)

\(P_{{{\text{MG}}}} (t)\) :

Main grid’s output electricity (kW)

\(P_{{{\text{WT}}}} (t)\) :

The output power of the wind turbine (kW)

\(P_{{{\text{IWT}}}} (t)\) :

The output power of the IWT (kW)

\(P_{{{\text{IWT}}}}^{{{\text{PORT}}}} (t)\) :

The output power of the Portable-IWT (kW)

\(P_{{{\text{Battery}}}}^{{{\text{PORT}}}} (t)\) :

The output power of the PRER’s battery (kW)

\(P_{{{\text{WT}}}}^{{{\text{PORT}}}} (t)\) :

The output power of the Portable-WT (kW)

\(P_{{{\text{PV}}}} (t)\) :

The output power of the PV (kW)

\(P_{{{\text{PV}}}}^{{{\text{PORT}}}} (t)\) :

The output power of the Portable-PV (kW)

\(P_{{{\text{CHP}}}} (t)\) :

The output power of the CHP (kW)

\(P_{{{\text{MT}}}} (t)\) :

The output power of the MT (kW)

\(P_{{{\text{Boiler}}}} (t)\) :

The output power of the Boiler (kWheat)

\(P_{{{\text{Buy}}}} (t)\) :

The power to buy (kW)

\(P_{{{\text{Sell}}}} (t)\) :

The power to sell (kW)

\(P_{{{\text{ES}}}} (t)\) :

The output power of the ES (kW)

\(P_{{{\text{TS}}}} (t)\) :

The output power of the TS (kWheat)

\(P_{{\text{E-dech}}}^{\max }\) :

The maximum rate of ES discharge

\(P_{{\text{E-ch}}}^{\max }\) :

The maximum rate of ES charge

\(P_{{\text{T-dech}}}^{\max }\) :

The maximum rate of TS discharge

\(P_{{\text{T-ch}}}^{\max }\) :

The maximum rate of TS charge

\(P_{{{\text{MT}}}}^{\max }\) :

MT’s maximum capacity (kW)

\(P_{{{\text{Boiler}}}}^{\max }\) :

Boiler’s maximum capacity (kWheat)

\(P_{{{\text{CHP}}}}^{\max }\) :

CHP’s maximum capacity (kW)

\(P_{{{\text{Line}}\,{1}}}\) :

Limitation of the transmission line (1) exchangeable power (kW)

\(P_{{{\text{Line}}\,{2}}}\) :

Limitation of the transmission line (2) exchangeable power (kW)

\(P_{{{\text{PV,}}\,{\text{STC}}}}\) :

The maximum ratio of STC’s test output power (kW)

\(P_{{{\text{PV,}}\,{\text{STC}}}}^{^{\prime}}\) :

The maximum ratio of STC’s test output power of portable-PV

\(R_{m} (t)\) :

Reserve margin at the time interval (t)

\(R_{m}^{\max } (t)\) :

The maximum limitation of reserve margin at the time interval (t)

\(R_{m}^{\min } (t)\) :

Minimum limitation of reserve margin at the time interval (t)

\({\text{REV}}(t)\) :

Revenue by portable-RER ($)

\({\text{REV}}^{*} (t)\) :

Revenue by portable-WT and PV ($)

\(R_{{{\text{PRER}}}}\) :

Revenue by PRER ($/kWh)

\(S_{R}\) :

Velocity amplification ratio

\(S_{R}^{^{\prime}}\) :

Velocity amplification ratio for Portable-IWT

t :

Time (h)

\(T_{j} (t)\) :

PV’s temperature of cells (°C)

\(T_{j}^{^{\prime}} (t)\) :

Portable-PV’s temperature of cells (°C)

\({\text{TC}}({\text{Cost}})\) :

The microgrid’s all-out expenditure ($)

\({\text{TP}}({\text{Emission}})\) :

The microgrid’s all-out pollution (kg)

\({\text{TE}}_{s} (t)\) :

The energy of TS (kWheat)

\(T_{{{\text{LD}}}} (t)\) :

The demand for thermal’s load (kWheat)

\({\text{TE}}_{s}^{\max }\) :

The maximum energy of TS (kWheat)

\({\text{TE}}_{s}^{\min }\) :

The minimum energy of TS (kWheat)

\({\text{TF}}_{{{\text{CHP}}}}\) :

Conversion coefficient of CHP

\(T_{{{\text{amp}}}}\) :

Ambiance temperature (°C)

\(T_{{{\text{amp}}}}^{^{\prime}}\) :

Portable-PV’s ambiance temperature (°C)

\(T_{{{\text{jstc}}}}\) :

PV’s reference temperature of cells (°C)

\(T_{{{\text{jstc}}}}^{^{\prime}}\) :

Portable-PV’s reference temperature of cells (°C)

\(V_{t}\) :

Wind pace (m/s)

\(V^{nom}\) :

Nominal wind pace (m/s)

\(V^{{\text{nom-IWT}}}\) :

IWT’s nominal wind pace (m/s)

\(V^{{{\text{nom}}{^{\prime}} }}\) :

Portable-IWT’s nominal wind pace (m/s)

\(V^{{{\text{nom}}}^{*}}\) :

Portable-WT’s nominal wind pace (m/s)

\(V^{{\text{cut-in}}}\) :

Minimum wind pace (m/s)

\(V^{{\text{cut-in*}}}\) :

Portable-WT’s minimum wind pace (m/s)

\(V^{{{\text{cut-in}}^{{{\text{IWT}}}} }}\) :

IWT’s minimum wind pace (m/s)

\(V^{{\text{cut-in}}^{\prime}}\) :

Portable-IWT’s minimum wind pace (m/s)

\(V^{{\text{cut-out}}}\) :

Maximum wind pace (m/s)

\(V^{{{\text{cut-out}}^{{{\text{IWT}}}} }}\) :

IWT’s maximum wind pace (m/s)

\(V^{{{\text{cut-out}}^{\prime}}}\) :

Portable-IWT’s maximum wind pace (m/s)

\(V^{{{\text{cut-out}}^{*} }}\) :

Portable-WT’s maximum wind pace (m/s)

\(\eta_{{{\text{CHP}}}}\) :

The efficiency factor of CHP

\(\eta_{{{\text{Boiler}}}}\) :

The efficiency factor of Boiler

\(\eta_{{{\text{MT}}}}\) :

The efficiency factor of MT

\(\eta_{C}^{E}\) :

The charge efficiency factor of ES

\(\eta_{D}^{E}\) :

The discharge efficiency factor of ES

\(\eta_{C}^{T}\) :

The charge efficiency factor of TS

\(\eta_{D}^{T}\) :

The discharge efficiency factor of TS

\(\eta^{\omega }\) :

The efficiency factor of WT

\(\eta^{{\omega {\text{-IWT}}}}\) :

The efficiency factor of IWT

\(\eta^{{\omega^{^{\prime}} }}\) :

The efficiency factor of Portable-IWT

\(\eta^{{\omega^{*} }}\) :

The efficiency factor of Portable-WT

\(\rho\) :

Air agglomeration (kg/m3)

\(\rho_{IWT}\) :

IWT’s air agglomeration (kg/m2 m3)

\(\rho^{^{\prime}}\) :

Portable-IWT’s air agglomeration (kg/m2 m3)

\(\rho^{*}\) :

Portable-WT’s air agglomeration (kg/m2 m3)

\(\gamma\) :

The conversion factor of PV

\(\gamma^{^{\prime}}\) :

The conversion factor of portable-PV

\(\theta\) :

nTime interval

CHP:

Combined heat and power

DG:

Distributed generation

DER:

Distributed energy resources

EPC:

Epsilon-constraints

ES:

Electrical storage

EMS:

Energy management system

ESS:

Energy storage system

GHG:

Green house gas

IWT:

INVELOX wind turbine

MT:

Micro-turbine

MINLP:

Mixed-integer non-linear programming

MILP:

Mixed-integer linear programming

MG:

Main grid

PV:

Photovoltaic

PIWT:

Portable INVELOX wind turbine

PRER:

Portable renewable energy resource

PORT:

Portable

RER:

Renewable energy resources

TS:

Thermal storage

UC:

Unit commitment

WT:

Wind turbine

References

  1. Dennehy C, Lawlor PG, Jiang Y, Gardiner GE, Xie S, Nghiem LD, Zhan X (2017) Greenhouse gas emissions from different pig manure management techniques: a critical analysis. Front Environ Sci Eng 11(3):11

    Article  Google Scholar 

  2. Shaterabadi M, Jirdehi MA, Amiri N, Omidi S (2020) Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines. Renew Energy 153:1355–1367

    Article  Google Scholar 

  3. Zang H, Xu Y, Li W, Huang G, Liu D (2012) An uncertain energy planning model under carbon taxes. Front Environ Sci Eng 6(4):549–558

    Article  Google Scholar 

  4. Mcelroy MB (2010) Challenge of global climate change: prospects for a new energy paradigm. Front Environ Sci Eng China 4(1):2–11

    Article  MathSciNet  Google Scholar 

  5. Khodaei A (2014) Microgrid optimal scheduling with multi-period islanding constraints. IEEE Trans Power Syst 29(3):1383–1392

    Article  Google Scholar 

  6. Kim J-S, So SM, Kim J-T, Cho J-W, Park H-J, Jufri FH, Jung J (2019) Microgrids platform: a design and implementation of common platform for seamless microgrids operation. Electric Power Syst Res 167:21–38

    Article  Google Scholar 

  7. Council GWE (2011) Global wind report. GWEC, Brussels, Belgium, Technical Report

    Google Scholar 

  8. Hajipour E, Bozorg M, Fotuhi-Firuzabad M (2015) Stochastic capacity expansion planning of remote microgrids with wind farms and energy storage. IEEE Trans Sustain Energy 6(2):491–498

    Article  Google Scholar 

  9. Allaei D (2012) Review of alternative wind power generation technologies. In: Second new energy wind energy forum, Guangzhou, China, 2012.

  10. Ross M, Abbey C, Bouffard F, Jos G (2015) Multiobjective optimization dispatch for microgrids with a high penetration of renewable generation. IEEE Trans Sustain Energy 6(4):1306–1314

    Article  Google Scholar 

  11. Jirdehi MA, Shaterabadi M (2020) Incentive programs caused by the carbon capture utilization and storage technology profit’s effect: optimal configuration and energy planning of hybrid microgrid involving INVELOX turbine. Energy Technol 8(10):2000398

    Article  Google Scholar 

  12. Allaei D, Andreopoulos Y (2013) INVELOX: a new concept in wind energy harvesting. In: Proceeding of ASME 2013 7th international conference on energy sustainability and 11th fuel cell science, engineering and technology conference, ES-Fuel Cell, pp 14–19

  13. Allaei D, Tarnowski D, Andreopoulos Y (2015) INVELOX with multiple wind turbine generator systems. Energy 93:1030–1040

    Article  Google Scholar 

  14. Morais H, Kádár P, Faria P, Vale ZA, Khodr H (2010) Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renew Energy 35(1):151–156

    Article  Google Scholar 

  15. Riffonneau Y, Bacha S, Barruel F, Ploix S (2011) Optimal power flow management for grid connected PV systems with batteries. IEEE Trans Sustain Energy 2(3):309–320

    Article  Google Scholar 

  16. Samadi P, Mohsenian-Rad A-H, Schober R, Wong VW, Jatskevich J (2010) Optimal real-time pricing algorithm based on utility maximization for smart grid. In: 2010 first IEEE international conference on smart grid communications (SmartGridComm), 2010. IEEE, pp 415–420

  17. Zhang X, Pei W, Deng W, Du Y, Qi Z, Dong Z (2015) Emerging smart grid technology for mitigating global warming. Int J Energy Res 39(13):1742–1756

    Article  Google Scholar 

  18. Wang Z, Chen B, Wang J, Begovic MM, Chen C (2015) Coordinated energy management of networked microgrids in distribution systems. IEEE Trans Smart Grid 6(1):45–53

    Article  Google Scholar 

  19. Arboleya P, Gonzalez-Moran C, Coto M, Falvo MC, Martirano L, Sbordone D, Bertini I, Di Pietra B (2015) Efficient energy management in smart micro-grids: ZERO grid impact buildings. IEEE Trans Smart Grid 6(2):1055–1063

    Article  Google Scholar 

  20. Zhang Y, Gatsis N, Giannakis GB (2013) Robust energy management for microgrids with high-penetration renewables. IEEE Trans Sustain Energy 4(4):944–953

    Article  Google Scholar 

  21. Baharlouei Z, Hashemi M (2014) Efficiency-fairness trade-off in privacy-preserving autonomous demand side management. IEEE Trans Smart Grid 5(2):799–808

    Article  Google Scholar 

  22. Jiang B, Fei Y (2015) Smart home in smart microgrid: a cost-effective energy ecosystem with intelligent hierarchical agents. IEEE Trans Smart Grid 6(1):3–13

    Article  Google Scholar 

  23. Kanchev H, Colas F, Lazarov V, Francois B (2014) Emission reduction and economical optimization of an urban microgrid operation including dispatched PV-based active generators. IEEE Trans Sustain Energy 5(4):1397–1405

    Article  Google Scholar 

  24. Conti S, Nicolosi R, Rizzo S, Zeineldin H (2012) Optimal dispatching of distributed generators and storage systems for MV islanded microgrids. IEEE Trans Power Delivery 27(3):1243–1251

    Article  Google Scholar 

  25. Bashir AA, Pourakbari-Kasmaei M, Contreras J, Lehtonen M (2019) A novel energy scheduling framework for reliable and economic operation of islanded and grid-connected microgrids. Electric Power Syst Res 171:85–96

    Article  Google Scholar 

  26. Shaterabadi M, Jirdehi MA (2020) Multi-objective stochastic programming energy management for integrated INVELOX turbines in microgrids: a new type of turbines. Renew Energy 145:2754–2769

    Article  Google Scholar 

  27. Delgado-Antillón C, Domínguez-Navarro J (2018) Probabilistic siting and sizing of energy storage systems in distribution power systems based on the islanding feature. Electric Power Syst Res 155:225–235

    Article  Google Scholar 

  28. Tabar VS, Abbasi V (2019) Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem. Energy 189:116264

    Article  Google Scholar 

  29. Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, Nielsen S, Ridjan I, Karnøe P, Sperling K (2015) Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl Energy 145:139–154

    Article  Google Scholar 

  30. Mortaz E, Valenzuela J (2017) Microgrid energy scheduling using storage from electric vehicles. Electric Power Syst Res 143:554–562

    Article  Google Scholar 

  31. Tabar VS, Jirdehi MA, Hemmati R (2017) Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy 118:827–839

    Article  Google Scholar 

  32. Hosseinnia H, Tousi B (2019) Optimal operation of DG-based micro grid (MG) by considering demand response program (DRP). Electric Power Syst Res 167:252–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ahmadi Jirdehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaterabadi, M., Jirdehi, M.A. Smart scheduling of transmission line switching: optimization of multi-objective microgrid’s day-ahead energy scheduling with considering high penetration of green energies and INVELOX. Electr Eng 103, 1753–1767 (2021). https://doi.org/10.1007/s00202-020-01193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01193-2

Keywords

Navigation