Skip to main content

Advertisement

Log in

Voltage quality improvement in electrical distribution networks using dynamic voltage restorers: design, simulation and experimental tests of a robust controller

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a simulation and implementation of a proportional integral (PI) and adaptive neuro-fuzzy inference system (ANFIS) control scheme of single-phase dynamic voltage restorer (DVR) for the mitigation of load voltage sag, swell and harmonics. The objective of the control strategies is to regulate the voltage of the DVR via an injection transformer to compensate for the voltage required and maintain the load voltage at a constant value. However, the conventional compensation techniques are grouped only on the load voltage and the DVR itself. The aim is to regulate the injection voltage of the DVR to compensate the grid voltage via the injection transformer in addition to maintaining the load voltage stable. These methods have been adapted to sinusoidal references and is resistant to sags, swells and harmonics. The proposed control strategies of the DVR are initially evaluated in simulations under MATLAB/Simulink and then validated on a laboratorial prototype of the single-phase DVR. n in-depth analysis across different controllers would show the performance and their robustness in mitigating network power quality issues. The robustness of the proposed ANFIS controller is examined by comparative studies with the PI controller. We notice that the proposed ANFIS controller was able to obtain a lower total harmonic distortion than that of the PI method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Subjak JS, Mcquilin JS (1990) Harmonics-causes, effects, measurements and analysis. IEEE Trans Ind Appl 26(6):1034–1042

    Article  Google Scholar 

  2. Muñoz-Galeano N, Alfonso-Gil JC, Orts-Grau S et al (2015) Instantaneous approach to IEEE Std. 1459 power terms and quality indices. Electr Power Syst Res 125:228–234

    Article  Google Scholar 

  3. Swain S, Ray P, Mohanty K (2017) Black Improvement of power quality using a robust hybrid series active power filter. IEEE Trans Power Electron 32(5):3490–3498

    Article  Google Scholar 

  4. Amit M, Shirazul I, Sandeep A, Yogesh S, Sanjay T (2017) Design and control of single-phase dynamic voltage restorer. Indian Acad Sci 42(8):1363–1375

    Google Scholar 

  5. Alexander K, Thompson MT (2007) Power quality in electrical systems. McGraw-Hill, London

    Google Scholar 

  6. Jothibasu S, Mishra M (2015) An improved direct AC–AC converter for voltage sag mitigation. IEEE Trans Ind Electron 62(1):21–29

    Article  Google Scholar 

  7. Hao H, Yonghai X (2014) Control strategy of PV inverter under unbalanced grid voltage sag. In: IEEE energy conversion congress and exposition, ECCE vol 1. pp 1029–34

  8. He L, Zhang K, Xiong J, Fan S (2015) Are petitive control scheme for harmonic suppression of circulating current in modular multilevel converters. IEEE Trans Power Electron 30(1):471–481

    Article  Google Scholar 

  9. Chen D, Zhang J, Qian Z (2013) An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability. IEEE Trans Ind Electron 60(2):814–823

    Article  Google Scholar 

  10. Basu M, Das SP, Dubey GK (2002) Performance study of UPQC-Q for load compensation and voltage sag mitigation. In: Conference of the industrial electronics society, vol 1, pp 698–703

  11. Chovatia Chandani M, Gupta Narayan P, Gupta PN (2012) Power quality improvement in a PV panel connected grid system using shunt active filter. Int J Comput Technol Electron Eng IJCTEE 2(4)

  12. Sankaran C (2002) Power quality. CRC Press, New York

    Google Scholar 

  13. Salgado-Herrera NM, Medina-Rios A, Tapia-Sánchez R, et al (2017) Sags and swells compensation and power factor correction using a dynamic voltage restorer in distribution systems. In: IEEE international autumn meeting on power, electronics and computing (ROPEC 2017). Ixtapa, Mexico

  14. Bollen MHJ (2000) Understanding power quality problems: voltage sags and interruptions. IEEE Press, New York

    Google Scholar 

  15. Toumi T, Allali A, Abdelkhalek O, Ben Abdelkader A, Meftouhi A, Soumeur MA (2020) PV integrated single-phase dynamic voltage restorer for sag voltage, voltage fluctuations and harmonics compensation. Int J Power Electron Drive Syst IJPEDS 11(1):547–554

    Google Scholar 

  16. Farhadi-Kangarlu M, Babaei E, Blaabjerg F (2017) A comprehensive review of dynamic voltage restorers. Int J Electr Power Energy Syst 92:136–155

    Article  Google Scholar 

  17. Nielsen JG, Blaabjerg F (2005) A detailed comparison of system topologies for dynamic voltage restorers. IEEE Trans Ind Appl 41(5):1272–1280

    Article  Google Scholar 

  18. Tu C, Guo Q, Jiang F, Shuai Z, He X (2018) Analysis and control of bridge-type fault current limiter integrated with the dynamic voltage restorer. Int J Electr Power Energy Syst 95:315–326

    Article  Google Scholar 

  19. Omer AI, Aleem SHEA, El-Zahab EEA, Algablawy M, Ali ZM (2019) An improve d’approach for robust control of dynamic voltage restorer and power quality enhancement using grasshopper optimization algorithm. ISA Trans 95:110–129

    Article  Google Scholar 

  20. Gamboa P, Silva JF, Pinto SF, Margato E (2019) Input-output linearization and PI controllers for AC-AC matrix converter. Electric Power Syst Res 169:214–228

    Article  Google Scholar 

  21. Bhumkittipich K, Mithulananthan N (2011) Performance enhancement of DVR for mitigating voltage sag/swell using vector control strategy. Energy Procedia 9:366–379

    Article  Google Scholar 

  22. Babaei E, Farhadi Kangarlu M (2012) Sensitive load voltage compensation against voltage sags/swells and harmonics in the grid voltage and limit downstream fault currents using DVR. Electr Power Syst Res 83:80–90

    Article  Google Scholar 

  23. Farhadi Kangarlu M, Hosseini SH, Babaei E, Koshkbar Sadigh A (2010) Transformerless DVR topology based on multilevel inverter with reduced number of switches. In: Proceedings of the PEDSTC, pp 371–375

  24. Babaei E, Hosseini SH, Gharehpetian GB, Tarafdar-Haque M, Sabahi M (2007) Reduction of DC voltage sources and switches in asymmetrical multilevel converters using a novel topology. Electr Power Syst Res 77(8):1073–1085

    Article  Google Scholar 

  25. Newman MJ, Holmes DG, Nielsen JG, Blaabjerg F (2005) A dynamic voltage restorer (DVR) with selective harmonic compensation at medium voltage level. IEEE Trans Ind Appl 41(6):1744–1753

    Article  Google Scholar 

  26. Li YW, Vilathgamuwa DM, Loh PC, Blaabjerg F (2007) A dual-functional medium voltage level DVR to limit downstream fault currents. IEEE Trans Power Electron 22(4):1330–1340

    Article  Google Scholar 

  27. Bhavaraju VB, Enjeti P (1994) A fast active power filter to correct line voltage sags. IEEE Trans Ind Electron 41(3):333–338

    Article  Google Scholar 

  28. Hietpas SM, Naden M (2000) Automatic voltage regulator using an AC voltage–voltage converter. IEEE Trans Ind Appl 36(1):33–38

    Article  Google Scholar 

  29. Perez J, Cardenas V, Moran L, Nunez C (2006) Single-phase AC–AC converter operating as a dynamic voltage restorer (DVR). In: Proceedings of the IECON, pp 1938–1943

  30. Babaei E, Farhadi-Kangarlu M, Sabahi M (2010) Compensation of voltage disturbances in distribution systems using single-phase dynamic voltage restorer. Electr Power Syst Res 80(12):1413–1420

    Article  Google Scholar 

  31. Toumi T, Allali A, Meftouhi A et al (2020) Robust control of series activepower filters for power quality enhancement in distribution grids: simulation and experimental validation. ISA Trans. https://doi.org/10.1016/j.isatra.2020.07.024

    Article  Google Scholar 

  32. Saeed AM, Abdel Aleem SHE, Ibrahim AM, Balci ME, El-Zahab EEA (2016) Power conditioning using dynamic voltage restorers under different voltage sag types. J Adv Res 7:95–103

    Article  Google Scholar 

  33. Rauf AM, Khadkikar V (2015) Integrated photovoltaic and dynamic voltage restorer system configuration. IEEE Trans Sustain Energy 6:400–410

    Article  Google Scholar 

  34. Biricik S, Komurcugil H (2016) Optimized sliding mode control to maximize existence region for single-phase dynamic voltage restorers. IEEE Trans Ind Inform 12:1486–1497

    Article  Google Scholar 

  35. Hafezi H, Faranda R (2018) Dynamic voltage conditioner: a new concept for smart low-voltage distribution systems. IEEE Trans Power Electron 33:7582–7590

    Article  Google Scholar 

  36. Nourmohamadi H, Bektas SI, Hosseini SH, Babaei E, Sabahi M (2017) A conventional dynamic voltage restorer with fault current limiting capability. Procedia Comput Sci 120:750–757

    Article  Google Scholar 

  37. Hagh MT, Shaker A, Sohrabi F, Gunsel IS (2017) Fuzzy-based controller for DVR in the presence of DG. Procedia Comput Sci 120:684–690

    Article  Google Scholar 

  38. Sitharan R, Sundarabalan CK, Devebalaji KR, Nataraj SK, Karthikeyan M (2018) Improved fault ride through capability of DFIG-wind turbines using customized dynamic voltage restorer. Sustain Cities Soc 39:114–125

    Article  Google Scholar 

  39. Pradhan M, Mishra MK (2019) Dual P-Q theory based energy-optimized dynamic voltage restorer for power quality improvement in a distribution system. IEEE Trans Ind Electron 66:2946–2955

    Article  Google Scholar 

  40. Ansal V (2019) ALO-optimized artificial neural network-controlled dynamic voltage restorer for compensation of voltage issues in distribution system. Soft Comput 24:1171–1184

    Article  Google Scholar 

  41. Jiang F, Tu C, Guo Q, Shuai Z, He X, He J (2019) Dual-functional dynamic voltage restorer to limit fault current. IEEE Trans Ind Electron 66:5300–5309

    Article  Google Scholar 

  42. Naidu TA, Arya SR, Maurya R (2019) Dynamic voltage restorer with quasi Newton filter based control algorithm and optimized values of PI regulator gains. IEEE J Emerg Sel Top Power Electron 7:2476–2485

    Article  Google Scholar 

  43. Chang Y, Jinjun L, Xiaoyu W, Zhaoan W (2007) A novel control of series active power filter without harmonics detection. In: Power electronics specialists conference. PESC 2007. IEEE, pp 1112–1115

  44. Jang J (1993) ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans Syst Cybern 23(03):665–685

    Article  Google Scholar 

  45. Lou X, Loparo KA (2004) Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech Syst Signal Process 18:1077–1095

    Article  Google Scholar 

  46. Sudheer K, Sudha R (2015) Hybrid fuzzy-ZN PID control based grid interfaced distribution level renewable energy source with power quality. In: ICCPCT. IEEE, pp 1–7, Mar 2015

Download references

Acknowledgements

At the end of this work, I thank all doctor colleges and professors who participated in this work with their information’s and who helped me as possible, doctor colleges and professors of Smart Grid and Renewables Energies Laboratory (SGRE-Lab) and LDDEE, Laboratoire de Développement Durable de l’Energie Electrique.

Funding

The authors are thankful to DGRSDT for providing a research grant. Josep M. Guerrero was supported by VILLUM FONDEN under the VILLUM Investigator (Grant No. 25920): Center for Research on Microgrids (CROM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Allali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The layer structure of ANFIS is depicted in Fig. 21.

Fig. 21
figure 21

Structures of ANFIS

Appendix 2

The Structures of PI controller is depicted in Fig. 22.

Fig. 22
figure 22

Structures of PI controller

The transfer function of a PI controller is given by:

$$ H_{i} \left( s \right) = K_{p} + \frac{{K_{i} }}{s} $$
(10)

The equivalent circuit of the DVR is illustrated in Fig. 23. The use of Kirchhoff’s law, obtains a mathematical formulation

$$ v_{\text{t}} = R_{\text{f}} i_{\text{L}} + L_{\text{f}} \frac{{{\text{d}}i_{\text{L}} }}{{{\text{d}}t}} + V_{\text{inj}} $$
(11)
$$ V_{\text{inj}} = \frac{1}{{C_{\text{f}} }}\smallint i_{\text{c}} {\text{d}}t $$
(12)
Fig. 23
figure 23

Series converter single-phase representation

The transfer function of the series converter is as follows:

$$ G_{\text{vse}} \left( s \right) = \frac{{\hat{V}_{\text{inj}} \left( s \right)}}{{\hat{i}_{\text{c}} \left( s \right)}} $$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toumi, T., Allali, A., Abdelkhalek, O. et al. Voltage quality improvement in electrical distribution networks using dynamic voltage restorers: design, simulation and experimental tests of a robust controller. Electr Eng 103, 1661–1678 (2021). https://doi.org/10.1007/s00202-020-01158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01158-5

Keywords

Navigation