Skip to main content
Log in

Dual mixing for the formation of Neoproterozoic granitic intrusions within the composite Jiuling batholith, South China

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Granite batholiths record the processes that occur during the formation and differentiation of the continental crust. The ~ 4000 km2 composite Neoproterozoic Jiuling batholith is one of the largest batholiths in southern China and consists of four peraluminous granitoid intrusions that were emplaced at ca. 828–810 Ma. These granitoids define a trend that moves from the terrestrial towards the seawater Nd–Hf isotope array, indicating the source of these magmas incorporated increasing amounts of marine sedimentary material over time. Our new geochronological and geochemical data suggest that the composite Neoproterozoic Jiuling batholith formed incrementally via the intrusion of multiple batches of crustally derived melts. The intrusions within the batholith are characterized by decreasing Rb/Sr ratios and increasing Na/K ratios and εHf(t) values, suggesting variations in source composition over time. These inter-intrusion variations can be well explained by three-component mixing in magma sources (mature, immature sediments and felsic arc-related granitoids) prior to partial melting, with inter-sample variations within individual intrusions occurring as a result of the subsequent mixing of different melt batches. The first stage of mixing within the source of these magmas involves a significant variation in source compositions and cannot reflect the simple melting of a heterogeneous metasedimentary source region. The second stage of mixing occurred during magma ascent and storage, and is recorded by variations in mineral compositions (e.g., zircon). These inter-intrusion and inter-sample geochemical variations provide evidence that the peraluminous Jiuling batholith formed as a result of two mixing processes, namely mixing within the magma source region and mixing of multiple batches of granitic melts. This dual mixing could explain the significant geochemical diversity present within peraluminous granitoid rocks worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albarède F, Simonetti A, Vervoort JD, Blichert-Toft J, Abouchami W (1998) A Hf-Nd isotopic correlation in ferromanganese nodules. Geophys Res Lett 25(20):3895–3898

    Google Scholar 

  • Appleby SK, Gillespie MR, Graham CM, Hinton RW, Oliver GJ, Kelly NM (2010) Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon. Contrib Mineral Petrol 160(1):115–132

    Google Scholar 

  • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse JL (2016) Nb–Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology 44:231–234

    Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Google Scholar 

  • Bateman PC (1992) Plutonism in the central part of the Sierra Nevada Batholith. U.S. US Government Printing Office, Washington, California

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J Petrol 47:329–353

    Google Scholar 

  • BGMRJX (Bureau of geology and Mineral Resources of Jiangxi Province) (1984) Regional geology of Jiangxi Province. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Google Scholar 

  • Camilletti G, Otamendi J, Tibaldi A, Cristofolini E, Leisen M, Romero R et al (2020) Geology, petrology and geochronology of sierra Valle Fértil-La Huerta batholith: implications for the construction of a middle-crust magmatic-arc section. J South Am Earth Sci 97:102423

    Google Scholar 

  • Carpentier M, Chauvel C, Maury RC, Mattielli N (2009) The ‘zircon effect’ as recorded by the chemical and Hf isotopic compositions of lesser Antilles forearc sediments. Earth Planet Sci Lett 287(1):86–99

    Google Scholar 

  • Chambers M, Memeti V, Eddy MP, Schoene B (2020) Half a million years of magmatic history recorded in a K-feldspar megacryst of the Tuolumne intrusive complex. Geology, California, USA. https://doi.org/10.1130/G46873.1

    Book  Google Scholar 

  • Charvet J (2013) The Neoproterozoic–early Paleozoic tectonic evolution of the South China Block: an overview. J Asian Earth Sci 74:198–209

    Google Scholar 

  • Chen JF, Jahn BM (1998) Crustal evolution of southeastern China: evidence from Sr, Nd and Pb isotopic compositions of granitoids and sedimentary rocks. Tectonophysics 284:101–133

    Google Scholar 

  • Chen Z, Xing G, Guo K et al (2009) Petrogenesis of keratophyes in the Pingshui group, Zhejiang: constraints from zircon U-Pb ages and Hf isotopes. Chin Sci Bull 54:1570–1578

    Google Scholar 

  • Clarke DB (1992) Granitoid rocks. Chapman and Hall, London

    Google Scholar 

  • Clemens JC, Regmi K, Nicholls IA, Weinberg R, Maas R (2016) The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas. Contrib Miner Petrol 171:35

    Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436

    Google Scholar 

  • Collins WJ, Huang HQ, Jiang X (2016) Water-fluxed crustal melting produces Cordilleran batholiths. Geology 44(2):143–146

    Google Scholar 

  • Couzinié S, Laurent O, Poujol M et al (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286:16–34

    Google Scholar 

  • Dong SW, Zhang YQ, Gao R, Su JB, Liu M, Li JH (2015) A possible buried Paleoproterozoic collisional orogen beneath central South China: evidence from seismic-reflection profiling. Precam Res 264:1–10

    Google Scholar 

  • Farina F, Stevens G, Gerdes A, Frei D (2014) Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): the processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contrib Mineral Petrol 168:1065

    Google Scholar 

  • Farner MJ, Lee CTA, Putirka KD (2014) Mafic–felsic magma mixing limited by reactive processes: a case study of biotite-rich rinds on mafic enclaves. Earth Planet Sci Lett 393:49–59

    Google Scholar 

  • Fiannacca P, Williams IS, Cirrincione R (2017) Timescales and mechanisms of batholith construction: constraints from zircon oxygen isotopes and geochronology of the late Variscan Serre Batholith (Calabria, southern Italy). Lithos 277:302–314

    Google Scholar 

  • Gao JF, Lu JJ, Lai MY, Lin YP, Pu W (2003) Analysis of trace elements in rock samples using HR-ICPMS. J Nanjing Univ (Natural Sci) 39:844–850 (in Chinese with English abstract)

    Google Scholar 

  • Gao LZ, Yang MG, Ding XZ, Liu XY, Liu X, Lin LH, Zhang CH (2008) New SHRIMP U-Pb dating for the Shuangqiaoshan Group in South China. Geol Bull China 27(10):1744–1751 (in Chinese with English abstract)

    Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor ZT (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11

    Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Google Scholar 

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638

    Google Scholar 

  • Hofmann AE, Baker MB, Eiller JM (2014) Sub-micron-scale trace-element distributions in natural zircons of known provenance implications for Ti-in-zircon thermometry. Contrib Mineral Petrol 168:1–21

    Google Scholar 

  • Huang XB, Yu ZZ, Zhou G (2003) Sedimentary features of the Mesoproterozoic Shuangqiaoshan group in northwestern Jiangxi. Geol Bull China 22(1):43–49

    Google Scholar 

  • Huang H, Niu Y, Mo X (2017) Garnet effect on Nd–Hf isotope decoupling: evidence from the Jinfosi batholith, Northern Tibetan Plateau. Lithos 274:31–38

    Google Scholar 

  • Huang H, Niu Y, Teng FZ, Wang SJ (2019) Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd–Hf isotope decoupling. Geochim Cosmochim Acta 259:17–36

    Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  • Janney PE, Leroex AP, Carlson RW (2005) Hafnium Isotope and trace element constraints on the nature of mantle heterogeneity beneath the central southwest Indian Ridge (13°E–47°E). J Petrol 46(12):2427–2464

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983

    Google Scholar 

  • Laumonier M, Scaillet B, Pichavant M, Champallier R, Andujar J, Arbaret L (2014) On the conditions of magma mixing and its bearing on andesite production in the crust. Nat Commun 5(1):1–12

    Google Scholar 

  • Laurent O, Zeh A, Gerdes A, Villaros A, Gros K, Słaby E (2017) How do granitoid magmas mix with each other? Insights from textures, trace element and Sr–Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contrib Miner Petrol 172:80

    Google Scholar 

  • Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y, Wingate MTD (2003) Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825Ma? Precambrian Res 122:45–83

    Google Scholar 

  • Li JY, Wang XL, Zhang FF, Zhou XH, Shu XJ (2016) A rhythmic source change of the Neoproterozoic basement meta-sedimentary sequences in the Jiangnan Orogen: implications for tectonic evolution on the southeastern margin of the Yangtze Block. Precambrian Res 280:46–60

    Google Scholar 

  • Marsh BD (2015) Magmatism, magma, and magma chambers. In: Watts AB (ed) Crustal and lithosphere dynamics. Elsevier, Amsterdam, pp 276–333

    Google Scholar 

  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology 36:459–465

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite plutons. J Volcanol Geotherm Res 167:282–299

    Google Scholar 

  • Miller CF, Furbish DJ, Walker BA, Claiborne LL, Koteas GC, Bleick HA, Miller JS (2011) Growth of plutons by incremental emplacement of sheets in crystal-rich host: evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics 500:65–77

    Google Scholar 

  • Moyen JF, Laurent O (2018) Archaean tectonic systems: a view from igneous rocks. Lithos 302–303:99–125

    Google Scholar 

  • Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien V (2017) Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277:154–177

    Google Scholar 

  • Nikkilä K, Mänttäri I, Nironen M, Eklund O, Korja A (2016) Three stages to form a large batholith after terrane accretion—an example from the Svecofennian orogen. Precambrian Res 281:618–638

    Google Scholar 

  • Patchett PJ, White WM, Feldmann H, Kielinczuk S, Hofmann AW (1984) Hafnium rare-earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 69:365–378

    Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673

    Google Scholar 

  • Polat A, Münker C (2004) Hf–Nd isotope evidence for contemporaneous subduction processes in the source of late Archean arc lavas from the Superior Province, Canada. Chem Geol 213:403–429

    Google Scholar 

  • Rong W, Zhang SB, Zheng YF (2017) Back-reaction of Peritectic Garnet as an explanation for the origin of Mafic enclaves in S-type granite from the Jiuling Batholith in South China. J Pet 58(3):569–598

    Google Scholar 

  • Rong W, Zhang SB, Zheng YF, Gao P (2018) Mixing of felsic magmas in granite petrogenesis: geochemical records of zircon and garnet in peraluminous granitoids from South China. J Geophys Res-Sol Ea 123(4):2738–2769

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) Treatise on geochemistry, the crust, vol 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38(10):919–922

    Google Scholar 

  • Schmitz MD, Vervoort JD, Bowring SA, Patchett PJ (2004) Decoupling of the Lu–Hf and Sm–Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa. Geology 32(5):405–408

    Google Scholar 

  • Stichel T, Frank M, Rickli J, Haley BA (2012) Hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. Earth Planet Sci Lett 317–318:282–294

    Google Scholar 

  • Tang M, Wang XL, Shu XJ, Wang D, Yang T (2014) Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling on “zircon effect” in crustal anatexis. Earth Planet Sci Lett 389:188–199

    Google Scholar 

  • Tichomirowa M, Kässner A, Sperner B, Lapp M, Leonhardt D, Linnemann U et al (2019) Dating multiply overprinted granites: The effect of protracted magmatism and fluid flow on dating systems (zircon U-Pb: SHRIMP/SIMS, LA-ICP-MS, CA-ID-TIMS; and Rb–Sr, Ar–Ar)–granites from the Western Erzgebirge (Bohemian Massif, Germany). Chem Geol 519:11–38

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53(1):343–385

    Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS et al (2005) 44 Billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150(6):561–580

    Google Scholar 

  • Van de Flierdt T, Goldstein SL, Hemming SR, Roy M, Frank M, Halliday AN (2007) Global neodymium–hafnium isotope systematics—revisited. Earth Planet Sci Lett 259(3–4):432–441

    Google Scholar 

  • Vervoort JD, Blichert-toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Google Scholar 

  • Vervoort JD, Patchett PJ (1996) Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta 60:3717–3733

    Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Google Scholar 

  • Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R, Downes H (2000) Hf–Nd isotopic evolution of the lower crust. Earth Planet Sci Lett 181:115–129

    Google Scholar 

  • Vervoort JD, Plank T, Prytulak J (2011) The Hf–Nd isotopic composition of marine sediments. Geochim Cosmochim Acta 75:5903–5926

    Google Scholar 

  • Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contrib Mineral Petrol 163:243–257

    Google Scholar 

  • Walker BA Jr, Miller CF, Claiborne LE, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geotherm Res 167:239–262

    Google Scholar 

  • Wang XL, Zhou JC, Qiu JS, Zhang WL, Liu XM, Zhang GL (2006) LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Res 145:111–130

    Google Scholar 

  • Wang XL, Zhou JC, Griffin WL et al (2007) Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Res 159:117–131

    Google Scholar 

  • Wang W, Zhou MF, Yan DP, Li JW (2012) Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Res 192:107–124

    Google Scholar 

  • Wang D, Wang XL, Zhou JC, Shu XJ (2013) Unraveling the Precambrian crustal evolution by Neoproterozoic conglomerates, Jiangnan orogen: U-Pb and Hf isotopes of detrital zircons. Precambrian Res 233:233–236

    Google Scholar 

  • Wang W, Zhou MF, Yan DP, Li L, Malpas J (2013) Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China. Precambrian Res 235:1–19

    Google Scholar 

  • Wang XL, Zhou JC, Wan YS, Kitajima K, Wang D, Bonamici C, Qiu JS, Sun T (2013) Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth Planet Sci Lett 366:71–82

    Google Scholar 

  • Wang XL, Zhou JC, Griffin WL et al (2014) Geochemical zonation across a Neoproterozoic Orogenic belt: isotopic evidence from granitoids and Metasedimentary rocks of the Jiangnan Orogen, China. Precambrian Res 242:154–171

    Google Scholar 

  • Wang D, Wang XL, Cai Y, Chen X, Zhang FR, Zhang FF (2017) Heterogeneous conservation of zircon xenocrysts in late jurassic granitic intrusions within the Neoproterozoic Jiuling Batholith, South China: a magma chamber growth model in deep crustal hot zones. J Petrol 58(9):1781–1810

    Google Scholar 

  • Wang D, Wang XL, Cai Y, Goldstein SL, Yang T (2018) Do Hf isotopes in magmatic zircons represent those of their host rocks? J Asian Earth Sci 154:202–212

    Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Google Scholar 

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195

    Google Scholar 

  • Xin Y, Li J, Dong S, Zhang Y, Wang W, Sun H (2017) Neoproterozoic post-collisional extension of the central Jiangnan Orogen: geochemical, geochronological, and Lu–Hf isotopic constraints from the ca. 820–800 Ma magmatic rocks. Precambrian Res 294:91–110

    Google Scholar 

  • Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH, Liu XM (2007) Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol 153:177–190

    Google Scholar 

  • Ye MF, Li XH, Li WX, Liu Y, Li ZX (2007) SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res 12(1–2):144–156

    Google Scholar 

  • Yu JH, Wang L, O’Reilly SY, Griffin WL, Zhang M, Li C, Shu L (2009) A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Res 174:347–363

    Google Scholar 

  • Yu JH, O’Reilly SY, Zhou MF, Griffin WL, Wang LJ (2012) U-Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Res 222–223:424–449

    Google Scholar 

  • Zhang SB, Zheng YF (2013) Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res 23:1241–1260

    Google Scholar 

  • Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY (2006a) Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Res 146:16–34

    Google Scholar 

  • Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY (2006b) Zircon U-Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Res 151:265–288

    Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP (2013) Constraints from zircon U-Pb ages, O and Hf isotopic compositions on the origin of Neoproterozoic peraluminous granitoids from the Jiangnan Fold Belt, South China. Contrib Mineral Petrol 166:1505–1519

    Google Scholar 

  • Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li X, Li Z, Wu FY (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96:127–150

    Google Scholar 

  • Zhong YF, Ma CQ, She ZB, Lin GC, Xu HJ, Wang RJ, Yang KG, Liu Q (2005) SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province. Earth Sci–J China Univ Geosci 30:685–691 (in Chinese with English Abstract)

  • Zhou MF, Yan DP, Kennedy AK, Li Y, Ding J (2002) SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67

    Google Scholar 

Download references

Acknowledgements

This work was substantially supported by the National Natural Science Foundation of China (Grant Nos. 41802051 and 41222016). We thank the assistance from L. S. Li for analyzing geochemical data, G. C. Wang and B. Wu for LA-ICP-MS analyses, and T. Yang for zircon Hf isotope analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Lei Wang.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15262 KB)

Supplementary file2 (XLS 555 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, XL. Dual mixing for the formation of Neoproterozoic granitic intrusions within the composite Jiuling batholith, South China. Contrib Mineral Petrol 176, 7 (2021). https://doi.org/10.1007/s00410-020-01757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01757-2

Keyword

Navigation