Skip to main content
Log in

A model of the thermoelastic medium absorbing a part of the acoustic spectrum

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An analytical model extending classical thermal elasticity is presented. It allows to introduce a correction to the attenuation of the mechanical waves at the higher frequency range. A material data set taken from experimental studies can be used to identify the attenuation rate as a function of frequency. An example is provided. The particular solution of the developed equations system in the form of the traveling monochromatic wave is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \({\varvec{E}}{\varvec{E}}={\varvec{e}}_k {\varvec{e}}_k {\varvec{e}}_n {\varvec{e}}_n\), \({\varvec{I}}=\frac{1}{2}\left( {\varvec{e}}_k {\varvec{e}}_n {\varvec{e}}_n {\varvec{e}}_k+{\varvec{e}}_k {\varvec{e}}_n {\varvec{e}}_k {\varvec{e}}_n\right) \).

References

  1. Nowacki, W.: Thermoelasticity. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  2. Müller, I., Müller, W.H.: Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo. Springer, New York (2009)

    MATH  Google Scholar 

  3. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  4. Jou, D., Lebon, G., Casas-Vázquez, J.: Extended Irreversible Thermodynamics. Springer, New York (2010)

    Book  Google Scholar 

  5. Papenfuss, C., Forest, S.: Walter de Gruyter. J. Non-Equilib. Thermodyn. 31(4), 319 (2006)

    Article  ADS  Google Scholar 

  6. Ivanova, E.A. , Vilchevskaya, E.N.: Description of thermal and micro-structural processes in generalized continua: Zhilin’s method and its modifications. In: Generalized Continua as Models for Materials, pp. 179–197. Springer, New York (2013)

  7. Ivanova, E.A., Vilchevskaya, E.N.: Zhilin’s Method and Its Modifications,"Encyclopedia of Continuum Mechanics", vol. Chap 7, pp. 1–9. Springer, Berlin (2018)

    Google Scholar 

  8. Zhilin, P.: Phase transitions and general theory of elasto-plastic bodies. In: Proceedings of XXIX Summer School-Conference. Advanced Problems in Mechanics, pp. 36–48 (2002)

  9. Zhilin, P.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  10. Indeitsev, D., Naumov, V., Semenov, B.: Dynamic effects in materials of complex structure. Mech. Solids 42(5), 672 (2007)

    Article  ADS  Google Scholar 

  11. Indeitsev, D., Meshcheryakov, Y.I., Kuchmin, A.Y., Vavilov, D.: Multi-scale model of steady-wave shock in medium with relaxation. Acta Mechanica 226(3), 917 (2015)

    Article  Google Scholar 

  12. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mechanica 215(1–4), 261 (2010)

    Article  Google Scholar 

  13. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mechanica 225(3), 757 (2014)

    Article  MathSciNet  Google Scholar 

  14. Krivtsov, A.: Heat transfer in infinite harmonic one-dimensional crystals. Doklady Phys. 60(9), 407 (2015)

    Article  ADS  Google Scholar 

  15. Krivtsov, A.M., Kuzkin, V.A.: Discrete and continuum thermomechanics (2017). arXiv:1707.09510

  16. Sokolov, A.A., Krivtsov, A.M., Müller, W.H., Vilchevskaya, E.N.: Change of entropy for the one-dimensional ballistic heat equation: sinusoidal initial perturbation. Phys. Rev. E 99(4), 042107 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Babenkov, M.B., Krivtsov, A.M., Tsvetkov, D.V.: Unsteady heat conduction processes in a harmonic crystal with a substrate potential (2017). arXiv:1802.02037

  18. Babenkov, M., Krivtsov, A., Tsvetkov, D.: Heat propagation in the one-dimensional harmonic crystal on an elastic foundation. Phys. Mesomech. (2019)

  19. Gavrilov, S.N., Krivtsov, A.M., Tsvetkov, D.V.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Contin. Mech. Thermodyn. 31(1), 255 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kuzkin, V.A.: Unsteady ballistic heat transport in harmonic crystals with polyatomic unit cell. Contin. Mech. Thermodyn. 31(6), 1573 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123 (2014)

    Article  MathSciNet  Google Scholar 

  22. El-Karamany, A.S., Ezzat, M.A.: Modified Fourier’s law with time-delay and kernel function: application in thermoelasticity. J. Therm. Stress. 38(7), 811 (2015)

    Article  Google Scholar 

  23. Povstenko, Y.: Fractional Thermoelasticity, vol. 219. Springer, New York (2015)

    Book  Google Scholar 

  24. Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acous. Soc. Am. 96(1), 491 (1994)

    Article  ADS  Google Scholar 

  25. Fellah, Z.E.A.,  Berger, S.,  Lauriks, W.,  Depollier, C.: Time domain wave equations for lossy media obeying a frequency power law: application to the porous materials. In: Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, pp. 143–149. World Scientific, Singapore (2002)

  26. Grigoriev, I.S., Meilikhov, E.Z.: Handbook of Physical Quantities. CRC Press, Boca Raton (1996)

    Google Scholar 

  27. Mathews, J., Walker, R.L.: Mathematical Methods of Physics, vol. 501. WA Benjamin, New York (1970)

    MATH  Google Scholar 

  28. Pervozvansky, A.A.: Theory Course of the Automatic Control. Moscow Izdatel Nauka, Moscow (1986)

    Google Scholar 

  29. Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control, 2nd edn. Wiley, New York (1997)

    Google Scholar 

  30. Ivanova, E.A., Vilchevskaya, E.N.: Truesdell’s and Zhilin’s Approaches: Derivation of Constitutive Equations Encyclopedia of Continuum Mechanics, pp. 1–11. Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-53605-6_58-1

    Book  Google Scholar 

  31. Hütter, G.: An extended Coleman–Noll procedure for generalized continuum theories. Contin. Mech. Thermodyn. 28(6), 1935 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)

    Book  Google Scholar 

  33. Nikol’skii, S.: A course of calculus. Nauka, Moscow (1991)

    Google Scholar 

  34. Sobolev, S.L., Browder, F.E.: Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, New York (1963)

    Book  Google Scholar 

  35. Vladimirov, V.S.: Equations of Mathematical Physics. Moscow Izdatel Nauka, Moscow (1976)

    Google Scholar 

  36. Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations. CRC Press, Boca Raton (1998)

    Book  Google Scholar 

  37. Altenbach, H., Forest, S., Krivtsov, A.: Generalized Continua as Models for Materials, with Multi-scale Effects or Under Multifield Actions. Springer, New York (2013)

    Book  Google Scholar 

  38. Kunin, I.A.: Elastic Media with Microstructure I: One-Dimensional Models, vol. 26. Springer, New York (2012)

    Google Scholar 

  39. Ayzenberg-Stepanenko, M., Cohen, T., Osharovich, G., Timoshenko, O.: Waves in periodic structures (mathematical models and computer simulations). Manuscript (2005, Beer-Shev)

  40. Mysik, S.V.: Analyzing the acoustic spectra of sound velocity and absorption in amphiphilic liquids. St. Petersburg Polytech. Univ. J.: Phys. Math. 1(3), 325 (2015)

    Google Scholar 

  41. Landau, L., Lifshitz, E., Pitaevskij, L.: Course of Theoretical Physics. vol. 10: Physical Kinetics. Oxford (1981)

  42. Mashinskii, E.: Amplitude-frequency dependencies of wave attenuation in single-crystal quartz: Experimental study. J. Geophys. Res.: Solid Earth 113(B11), (2008)

  43. Upadhyay, M.V.: On the thermo-mechanical theory of field dislocations in transient heterogeneous temperature fields. Working paper or preprint (2020). https://hal.archives-ouvertes.fr/hal-02439503

Download references

Acknowledgements

The author is grateful to E.N. Vilchevskaya, E.A. Ivanova, D.A. Indeitsev, A.M. Krivtsov, and an anonymous referee for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail B. Babenkov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenkov, M.B. A model of the thermoelastic medium absorbing a part of the acoustic spectrum. Continuum Mech. Thermodyn. 33, 789–802 (2021). https://doi.org/10.1007/s00161-020-00957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00957-2

Keywords

Navigation