Skip to main content
Log in

A-type Quiver Varieties and ADHM Moduli Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study quantum geometry of Nakajima quiver varieties of two different types—framed A-type quivers and ADHM quivers. While these spaces look completely different we find a surprising connection between equivariant K-theories thereof with a nontrivial match between their equivariant parameters. In particular, we demonstrate that quantum equivariant K-theory of \(A_n\) quiver varieties in a certain \(n\rightarrow \infty \) limit reproduces equivariant K-theory of the Hilbert scheme of points on \(\mathbb {C}^2\). We analyze the correspondence from the point of view of enumerative geometry, representation theory and integrable systems. We also propose a conjecture which relates spectra of quantum multiplication operators in K-theory of the ADHM moduli spaces with the solution of the elliptic Ruijsenaars–Schneider model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. To be more precise, \(\hbar \) is the class in the representation ring of the weight one representation.

  2. \(\zeta _1\) is also redefined to absorb factor \((-q^{1/2}\hbar ^{-1/2})^{d_1}\), which arises from E function above.

  3. I thank A. Okounkov and S. Katz for interesting discussions on these matters.

  4. To actually get Roger polynomials of one variable x one needs to put \(\zeta _1=\xi \) and \(\zeta _1=\xi ^{-1}\) and multiply the resulting expression by \(\xi ^{\lambda _2}\).

  5. This moduli space is a hyperKähler manifold and the quantization is given in complex structure J.

  6. It is spherical DAHA which often appears in physics applications, albeit with some exceptions [KSNS].

  7. Schiffmann and Vasserot used this asymptotic partition to show that there is a triangular decomposition in Heisenberg algebras inside \(\mathfrak {E}\). (see Proposition 4.8. in loc. cit.).

  8. To get a stationary eigenvalue problem one needs to turn off one of the equivariant parameters on either complex line in \(\mathbb {C}^2\).

  9. Non affine.

  10. We abusing the notation by denoting by \(T_r\) both the tRS class and the operator. Hopefully this will not confuse the reader.

References

  1. Aganagic, M., Okounkov, A.: Quasimap counts and Bethe eigenfunctions. arXiv:1704.08746

  2. Alday, L.F., Tachikawa, Y.: Affine SL(2) conformal blocks from 4D gauge theories. Lett. Math. Phys. 94, 87–114 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Braverman, A.: Instanton counting via affine Lie algebras I: equivariant J-functions of (Affine) Flag Manifolds and Whittaker vectors. arXiv:math/0401409

  4. Braverman, A., Etingof, P.: Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg–Witten prepotential. arXiv:math/0409441

  5. Braverman, A., Finkelberg, M., Shiraishi, J.: Macdonald polynomials, Laumon spaces and perverse coherent sheaves (2012). arXiv:1206.3131

  6. Bullimore, M., Kim, H.-C., Koroteev, P.: Defects and quantum Seiberg–Witten geometry. J. High Energy Phys. (2015). https://doi.org/10.1007/JHEP05(2015)095

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridgeland, T., King, Al., Reid, M.: Mukai implies McKay: the McKay correspondence as an equivalence of derived categories. arXiv:math/9908027

  8. Braverman, A., Maulik, D., Okounkov, A.: Quantum cohomology of the Springer resolution. Adv. Math. 227, 421–458 (2011)

    Article  MathSciNet  Google Scholar 

  9. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. arXiv:math/0505148

  10. Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. 141(1), 191–216 (1995)

    Article  MathSciNet  Google Scholar 

  11. Cherednik, I.: Double affine Hecke Algebras. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  12. Costello, K.: Holography and Koszul duality: the example of the M2 brane (2017). arXiv:1705.02500

  13. Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014). arXiv:1106.3724

    Article  ADS  MathSciNet  Google Scholar 

  14. Diaconescu, D.-E.: Moduli of ADHM sheaves and local Donaldson–Thomas theory (2008). arXiv:0801.0820

  15. Dinkins, H., Smirnov, A.: Capped vertex with descendants for zero dimensional \(A_{\infty }\) quiver varieties (2020). arXiv:2005.12980

  16. Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous \(gl_\infty \): tensor products of fock modules and WN-characters (2010). arXiv:1002.3113

  17. Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S., A commutative algebra on degenerate CP1 and Macdonald polynomials (2009). arXiv:0904.2291

  18. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E., Representations of quantum toroidal GL(n) (2012). arXiv:1204.5378

  19. Finkelberg, M., Rybnikov, L.: Quantization of Drinfeld Zastava in type A (2010). arXiv:1009.0676

  20. Frenkel, I., Reshetikhin, N.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146, 1–60 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Feigin, B., Tsymbaliuk, A.: Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra. Kyoto J. Math. 51(4), 831-854 (2011) arXiv:0904.1679

  22. Ginzburg, V.: Lectures on Nakajima’s Quiver Varieties. arXiv:0905.0686

  23. Gaiotto, D., Koroteev, P.: On three dimensional Quiver Gauge theories and integrability. JHEP 1305, 126 (2013). arXiv:1304.0779

    Article  ADS  MathSciNet  Google Scholar 

  24. Givental, A., Lee, Y.P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups. arXiv:math/0108105

  25. Gopakumar, R., Vafa, C.: On the Gauge theory/geometry correspondence. arXiv:math/9811131

  26. Haiman, M.: Hilbert schemes, polygraphs, and the macdonald positivity conjecture. J. Amer. Math. Soc. 14 (2001), 941-1006. arXiv:math/0010246

  27. Koroteev, P., Gukov, S., Nawata, S., Saberi, I.: Branes and DAHA (to appear)

  28. Koroteev, P.: Quantum geometry, instantons and elliptic albegras. Tsinghua Sanya International Mathematical Forum (2018 Jan.). https://goo.gl/TDsuFL

  29. Kirillov, A.N., Noumi, M.: Affine Hecke algebras and raising operators for Macdonald polynomials. arXiv:q-alg/9605004

  30. Koroteev, P., Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Quantum K-theory of quiver varieties and many-body systems (2017). arXiv:1705.10419

  31. Koroteev, P., Sciarappa, A.: On elliptic algebras and large-n supersymmetric gauge theories. J. Math. Phys. 57, 112302 (2016). arXiv:1601.08238

  32. Koroteev, P., Sciarappa, A.: Quantum hydrodynamics from large-n supersymmetric gauge theories. Lett. Math. Phys. 108 (2018) arXiv:1510.00972

  33. Koroteev, P., Zeitlin, A.M.: Difference equations for K-theoretic vertex functions of type-A Nakajima varieties (2018). arXiv:1802.04463

  34. MacDonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Clarendon Press, Oxford (1995)

    Google Scholar 

  35. McGerty, K., Nevins, T.: Kirwan surjectivity for quiver varieties. arXiv:1610.08121

  36. Maulik, D., Oblomkov, A.: Donaldson–Thomas theory of An x P1 (2008). arXiv:0802.2739

  37. Maulik, D., Oblomkov, A.: Quantum cohomology of the Hilbert scheme of points on an-resolutions (2008). arXiv:0802.2737

  38. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. arXiv:1211.1287

  39. Maulik, D., Oblomkov, A., Okounkov, A., Pandharipande, R.: Gromov–Witten/Donaldson–Thomas correspondence for toric 3-folds (2008). arXiv:0809.3976

  40. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. JAMS 14, 145–238 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Nakajima, H.: More lectures on Hilbert schemes of points on surfaces (2014). arXiv:1401.6782

  42. Nawata, S.: Givental J-functions. Quantum integrable systems, AGT relation with surface operator (2014). arXiv:1408.4132

  43. Negut, A.: Quantum algebras and cyclic quiver varieties. arXiv:1504.06525

  44. Negut, A.: Affine Laumon spaces and the Calogero–Moser integrable system (2011). arXiv:1112.1756

  45. Negut, A.: Moduli of Flags of Sheaves and their K-theory (2012). arXiv:1209.4242

  46. Nekrasov, N.: BPS/CFT correspondence IV: sigma models and defects in gauge theory (2017). arXiv:1711.11011

  47. Nekrasov, N.: BPS/CFT correspondence V: BPZ and KZ equations from qq-characters (2017). arXiv:1711.11582

  48. Nedelin, A., Pasquetti, S., Zenkevich, Y.: T[U(N)] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences (2017). arXiv:1712.08140

  49. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories (2009). arXiv:0908.4052

  50. Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl., 177, 105–119. (2009) arXiv:0901.4748, 21 p., short version II, conference in honour of T. Eguchi’s 60th anniversary

  51. Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. Proc. Suppl. 192–193, 91–112 (2009). arXiv:0901.4744

    Article  ADS  MathSciNet  Google Scholar 

  52. Oblomkov, A.: Double affine Hecke algebras of rank 1 and affine cubic surfaces. arXiv:math/0306393

  53. Oblomkov, A.: Double affine Hecke algebras and Calogero–Moser spaces. arXiv:math/0303190

  54. Okounkov, A.: Enumerative geometry and geometric representation theory. arXiv:1701.00713

  55. Okounkov, A.: On the crossroads of enumerative geometry and geometric representation theory. arXiv:1801.09818

  56. Okounkov, A.: Lectures on k-theoretic computations in enumerative geometry (2015). arXiv:1512.07363

  57. Okounkov, A., Pandharipande, R.: The local Donaldson–Thomas theory of curves. arXiv:math/0512573

  58. Okounkov, A., Pandharipande, R.: Quantum Cohomology of the Hilbert scheme of points in the plane. arXiv:math/0411210

  59. Okounkov, A., Smirnov, A.: Quantum difference equation for Nakajima varieties (2016). arXiv:1602.09007

  60. Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Baxter Q-operator from quantum K-theory (2016). arXiv:1612.08723

  61. Saito, Y.: Elliptic Ding–Iohara algebra and commutative families of the elliptic Macdonald Operator. ArXiv e-prints (2013). arXiv:1309.7094

  62. Saito, Y.: Elliptic Ding–Iohara algebra and the free field realization of the elliptic macdonald operator. ArXiv e-prints (2013). arXiv:1301.4912

  63. Sciarappa, A.: Bethe/Gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings (2016). arXiv:1606.01000

  64. Smirnov, A.: Rationality of capped descendent vertex in (2016). arXiv:1612.01048

  65. Shiraishi, J., Tutiya, Y.: Periodic Benjamin–Ono equation with discrete Laplacian and 2D-TODA hierarchy. In: New Trends in Quantum Integrable Systems, October, pp. 357–371 (2011)

  66. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials (2008). arXiv:0802.4001

  67. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of A**2 (2009). arXiv:0905.2555

  68. Suzuki, T., Vazirani, M.: Tableaux on periodic skew diagrams and irreducible representations of the double affine Hecke algebra of type A. arXiv:math/0406617

  69. Varagnolo, M., Vasserot, E.: Double affine Hecke algebras and affine flag manifolds. I (2009). arXiv:0911.5328

  70. Zenkevich, Y.: 3D field theory, plane partitions and triple Macdonald polynomials (2017). arXiv:1712.10300

Download references

Acknowledgements

I would like to thank I. Cherednik, E. Gorsky, S. Gukov, S. Katz, A. Negut, A. Oblomkov, A. Okounkov, P. Pushkar, A. Smirnov, Y. Soibelman, A. Zeitlin for valuable discussions and suggestions. I acknowledge support of IHÉS and funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (QUASIFT grant agreement 677368). I would also like to thank Simons Center for Geometry and Physics in Stony Brook, Mathematical Sciences Research Institute in Berkeley, Yau Mathematical Center at Tsinghua Univeristy, Beijing [K], where part of this work was done. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958 and in part by AMS-Simons grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koroteev.

Additional information

Communicated by H. T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. tRS Difference Equation for \(T^*\mathbb {P}^1\)

Appendix A. tRS Difference Equation for \(T^*\mathbb {P}^1\)

Let us illustrate (2.16) for \(X_2=T^*\mathbb {P}^1\). The vertex function is given by

$$\begin{aligned} V=\frac{e^{\frac{\log \zeta _2\cdot \log a_1\cdots a_n}{\log q}}}{2\pi i}\int \limits _C \frac{ds}{s}\,e^{\frac{\log \zeta _1/\zeta _2\cdot \log s}{\log q}} \frac{\varphi \left( \hbar \frac{s}{a_1}\right) }{\varphi \left( \frac{s}{a_1}\right) }\frac{\varphi \left( \hbar \frac{s}{a_2}\right) }{\varphi \left( \frac{s}{a_2}\right) }. \end{aligned}$$
(A.1)

For \(X_2\) there are two tRS operators

$$\begin{aligned} T_1(\varvec{\zeta })&= \frac{\hbar \zeta _1-\zeta _2}{\zeta _1-\zeta _2} p_1 + \frac{\hbar \zeta _2-\zeta _1}{\zeta _2-\zeta _1} p_2,\nonumber \\ T_2(\varvec{\zeta })&= p_1 p_2. \end{aligned}$$
(A.2)

By acting with these operators on the above function we get

$$\begin{aligned} T_1(\varvec{\zeta }) \mathrm {V}&= \mathrm {V}^{\left( T_1(s)\right) },\nonumber \\ T_2(\varvec{\zeta }) \mathrm {V}&= a_1 a_2 \mathrm {V}, \end{aligned}$$
(A.3)

where the first tRS class is given byFootnote 10

$$\begin{aligned} T_1(s) = \frac{\hbar \zeta _1-\zeta _2}{\zeta _1-\zeta _2} s + \frac{\hbar \zeta _2-\zeta _1}{\zeta _2-\zeta _1} \frac{a_1 a_2}{s}, \end{aligned}$$
(A.4)

and is a linear combination of the tautological bundle \(\mathscr {V}\) and \(\Lambda ^2\mathscr {W}\otimes \mathscr {V}^*\) over \(X_2\) with coefficients dependent on quantum parameter \(z=\frac{\zeta _1}{\zeta _2}\) and the equivariant parameters.

In order to prove that \(\mathrm {V}^{\left( T_1(s)\right) }=(a_1+a_2)\mathrm {V}^{(1)}\) we shall use the following integral (see also [NPZ], Appendix D)

$$\begin{aligned} I_2=\int \limits _C \frac{ds}{s}\left[ \frac{1}{s}\left( 1-\frac{s}{a_1}\right) \left( 1-\frac{s}{a_2}\right) \right] \,e^{\frac{\log z \cdot \log s}{\log q}} \frac{\varphi \left( \hbar \frac{s}{a_1}\right) }{\varphi \left( \frac{s}{a_1}\right) }\frac{\varphi \left( \hbar \frac{s}{a_2}\right) }{\varphi \left( \frac{s}{a_2}\right) }, \end{aligned}$$
(A.5)

where contour C is chosen in such a way that shift \(s\rightarrow q^{-1}s\) does not pick up any poles. This can be straightforwardly generalized to the n-particle tRS model. Thus integral \(I_2\) in the shifted variable is equal to itself which leads us to

$$\begin{aligned} 0=\int \limits _C \frac{ds}{s}\frac{1}{z \hbar }\left[ (1-\hbar z)s+(\hbar - z)\frac{a_1 a_2}{s}-(a_1+a_2)(1-z)\right] \,e^{\frac{\log z \cdot \log s}{\log q}} \frac{\varphi \left( \hbar \frac{s}{a_1}\right) }{\varphi \left( \frac{s}{a_1}\right) }\frac{\varphi \left( \hbar \frac{s}{a_2}\right) }{\varphi \left( \frac{s}{a_2}\right) },\nonumber \\ \end{aligned}$$
(A.6)

from where the statement follows since the expression in the square brackets must vanish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroteev, P. A-type Quiver Varieties and ADHM Moduli Spaces. Commun. Math. Phys. 381, 175–207 (2021). https://doi.org/10.1007/s00220-020-03915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03915-w

Navigation