Skip to main content

Advertisement

Log in

Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent research suggests the widespread existence of the signal-to-noise paradox in seasonal-to-decadal climate predictions. The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically small and models may make better predictions of the observations than they predict themselves. The paradox highlights a potentially serious issue with model predictions as previous studies may underestimate the limit of predictability. The focus of this paper is two-fold: the first objective is to re-examine decadal predictability from the lens of the signal-to-noise paradox in the context of CMIP5 models. We demonstrate that decadal predictability is generally underestimated in CMIP5 models possibly due to the existence of the signal-to-noise paradox. Models underestimate decadal predictability in regions where it is likely for the paradox to exist, especially over the Tropical Atlantic Ocean and Tropical Indian Ocean and eddy-rich regions, including the Gulf Stream, Kuroshio Current, and Southern Ocean. The second objective follows from the results of the first, attempting to determine if this underestimate of decadal predictability is, at least partially, due to missing ocean mesoscale processes and features in CMIP5 models. A suite of coupled model experiments is performed with eddying and eddy-parameterized ocean component. Compared with eddy-parameterized models, the paradox is less likely to exist in eddying models, particularly over eddy-rich regions. These also happen to be regions where increased decadal predictability is identified. We hypothesize that this enhanced predictability is due to the enhanced vertical connectivity in the ocean. The presence of mesoscale ocean features and associated vertical connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

The research is supported by NOAA NA18OAR4310293, NA15OAR4320064, NSF OCE1419569, OCE1559151, and DOE DE-SC0019433. All the observations and CMIP5 model data used in this study are publicly available from the links and citations provided in the manuscript. CCSM4 model codes, experiments, and outputs were performed and archived at the University of Miami Center for Computational Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Kirtman, B., Siqueira, L. et al. Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model. Clim Dyn 56, 2895–2913 (2021). https://doi.org/10.1007/s00382-020-05621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05621-8

Keywords

Navigation