Skip to main content
Log in

Nanocrystallization-locked Network of Poly(styrene-b-isobutylene-b-styrene)-g-Polytetrahydrofuran Block Graft Copolymer

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

An Erratum to this article was published on 22 June 2021

This article has been updated

Abstract

Poly(styrene-b-isobutylene-b-styrene) triblock copolymer (SIBS), a kind of thermoplastic elastomer with biocompatibility and biostability containing fully saturated soft segments, could be synthesized via living cationic copolymerization. A novel poly[(styrene-co-methylstyrene)-b-isobutylene-b-(styrene-co-methylstyrene)]-g-polytetrahydrofuran (M-SIBS-g-PTHF) block graft copolymer was prepared to increase the polarity and service temperature of SIBS by grafting polar PTHF segments onto SIBS. A series of the above block graft copolymers with average grafting numbers from 2 to 6 and molecular weights of PTHF branches ranging from 200 g·mol−1 to 4200 g·mol−1 were successfully synthesized via living cationic ring-opening polymerization of tetrahydrofuran (THF) coinitiated by AgClO4. The introduction of PTHF branches led to an obvious microphase separation due to thermodynamic incompatibility among the three kinds of segments of polyisobutylene (PIB), polystyrene (PS) and PTHF. Moreover, the microphase separation promotes the rearrangement of PTHF branches to form the nanocrystallization-locked physically cross-linked network after storage at room temperature for 2 months, leading to insolubility of the copolymers even in good solvents. The melting temperature and enthalpy of PTHF nanocrystallization locked in hard domains of M-SIBS-g5-PTHF-1.1k block graft copolymer increased remarkably up to 153 °C and 117.0 J·g−1 by 23 °C and 11.6 J·g−1 respectively after storage for long time. Storage modulus (G′) is higher than loss modulus (G″) of M-SIBS-g-PTHF block graft copolymer at temperatures ranging from 100 °C to 180 °C, which is much higher than those of the SIBS triblock copolymer. To the best of our knowledge, this is the first example of high performance M-SIBS-g-PTHF block graft copolymers containing segments of PIB, PS and PTHF with nanocrystallization-locked architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Yan, P. F.; Guo, A. R.; Liu, Q.; Wu, Y. X. Living cationic polymerization of isobutylene coinitiated by FeCl3 in the presence of isopropanol. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3383–3392.

    Article  CAS  Google Scholar 

  2. Pinchuk, L.; Wilson, G. J.; Barry, J. J.; Schoephoerster, R. T.; Parel, J. M.; Kennedy, J. P. Medical applications of poly(styrene-triblock-isobutylene-triblock-styrene) (“SIBS”). Biomaterials 2008, 29, 448–460.

    Article  CAS  PubMed  Google Scholar 

  3. Kang, E.; Wang, H.; Kwon, I. K.; Song, Y. H.; Kamath, K.; Miller, K. M.; Barry, J.; Cheng, J. X.; Park, K. Application of coherent anti-Stokes Raman scattering microscopy to image the changes in a paclitaxel-poly(styrene-b-isobutylene-b-styrene) matrix pre- and post-drug elution. J. Biomed. Mater. Res. Part A 2008, 87, 913–920.

    Article  Google Scholar 

  4. Kleinedler, J. J.; Foley, J. D.; Alexander, J. S.; Roerig, S. C.; Hebert, V. Y.; Dugas, T. R. Synergistic effect of resveratrol and quercetin released from drug-eluting polymer coatings for endovascular devices. J. Biomed. Mater. Res. Part B 2011, 99B, 266–275.

    Article  CAS  Google Scholar 

  5. McDermott, M. K.; Kim, C. S.; Saylor, D. M.; Patwardhan, D. V. Impact of copolymer ratio on drug distribution in styrene-isobutylene-styrene triblock copolymers. J. Biomed. Mater. Res. Part B 2013, 101, 1191–1199.

    Article  Google Scholar 

  6. Pinchuk, L.; Riss, I.; Batlle, J. F.; Kato, Y. P.; Martin, J. B.; Arrieta, E.; Palmberg, P.; Parrish, R. K.; Weber, B. A.; Kwon, Y.; Parel, J. M. The use of poly(styrene-triblock-isobutylene-triblock-styrene) as a microshunt to treat glaucoma. Regen. Biomater. 2016, 3, 137–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morales, B.; Kaskar, O.; Grace, L. R. Design and processing of an elastomeric nanocomposite for biomedical pressure sensing applications. Mater. Today Commun. 2018, 17, 278–288.

    Article  CAS  Google Scholar 

  8. Yuan, S. S.; Luan, S. F.; Yan, S. J.; Shi, H. C.; Yin, J. H. Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl. Mater. Interfaces 2015, 7, 19466–19473.

    Article  CAS  PubMed  Google Scholar 

  9. Knauer, K. M.; Zhu, Y.; Storey, R. F.; Morgan, S. E. Phase separation and permeability in polyisobutylene-based miktoarm star polymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 916–925.

    Article  CAS  Google Scholar 

  10. Sipos, L.; Som, A.; Faust, R.; Richard, R.; Schwarz, M.; Ranade, S.; Boden, M.; Chan, K. Controlled delivery of paclitaxel from stent coatings using poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene) and its acetylated derivative. Biomacromolecules 2005, 6, 2570–2582.

    Article  CAS  PubMed  Google Scholar 

  11. BouchéKif, H.; Som, A.; Sipos, L.; Faust, R. Living cationic sequential triblock copolymerization of isobutylene with 4-tert-butoxystyrene: synthesis and characterization of poly(p-hydroxystyrene-b-isobutylene-b-p-hydroxystyrene) triblock copolymers. J. Macromol. Sci., Part A: Pure Appl. Chem. 2007, 44, 359–366.

    Article  Google Scholar 

  12. Wu, Y. B.; Li, K.; Xiang, D.; Zhang, M.; Yang, D.; Zhang, J. H.; Mao, J.; Wang, H.; Guo, W. L. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft. Appl. Surf. Sci. 2018, 445, 8–15.

    Article  CAS  Google Scholar 

  13. Yang, S. X.; Fan, Z. Y.; Zhang, F. Y.; Li, S. H.; Wu, Y. X. Functionalized copolymers of isobutylene with vinyl phenol: synthesis, characterization, and property. Chinese J. Polym. Sci. 2019, 37, 919–929.

    Article  CAS  Google Scholar 

  14. Elabd, Y. A.; Napadensky, E. Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers at high ion-exchange capacities. Polymer 2004, 45, 3037–3043.

    Article  CAS  Google Scholar 

  15. Avilés-Barreto, S. L.; Suleiman, D. Transport properties of sulfonated poly(styrene-isobutylene-styrene) membranes with counter-ion substitution. J. Appl. Polym. Sci. 2013, 129, 2294–2304.

    Article  Google Scholar 

  16. Yuan, S. S.; Li, Y. G.; Luan, S. F.; Shi, H. C.; Yan, S. J.; Yin, J. H. Infection-resistant styrenic thermoplastic elastomers that can switch from bactericidal capability to anti-adhesion. J. Mater. Chem. B 2016, 4, 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  17. Dai, P.; Mo, Z. H.; Xu, R. W.; Zhang, S.; Lin, X.; Lin, W. F.; Wu, Y. X. Development of a cross-linked quaternized poly(styrene-b-isobutylene-b-styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application. RSC Adv. 2016, 6, 52122–52130.

    Article  CAS  Google Scholar 

  18. Mo, Z. H.; Yang, R.; Hong, S.; Wu, Y. X. In situ preparation of cross-linked hybrid anion exchange membrane of quaternized poly (styrene-b-isobutylene-b-styrene) covalently bonded with graphene. Int. J. Hydrogen Energy 2018, 43, 1790–1804.

    Article  CAS  Google Scholar 

  19. Mo, Z. H.; Wu, Y. X. Arc-bridge polydimethylsiloxane grafted graphene incorporation into quaternized poly(styrene-b-isobutylene-b-styrene) for construction of anion exchange membranes. Polymer 2019, 177, 290–297.

    Article  CAS  Google Scholar 

  20. Gao, L. C.; Zhang, C. L.; Liu, X.; Fan, X. H.; Wu, Y. X.; Chen, X. F.; Shen, Z.; Zhou, Q. F. ABA type liquid crystalline triblock copolymers by combination of living cationic polymerizaition and ATRP: synthesis and self-assembly. Soft Matter 2008, 4, 1230–1236.

    Article  CAS  PubMed  Google Scholar 

  21. Gao, L. C.; Yao, J.; Shen, Z. H.; Wu, Y. X.; Chen, X. F.; Fan, X. H.; Zhou, Q. F. Self-assembly of rod-coil-rod triblock copolymer and homopolymer blends. Macromolecules 2009, 42, 1047–1050.

    Article  CAS  Google Scholar 

  22. Storey, R. F.; Scheuer, A. D.; Achord, B. C. Amphiphilic poly(acrylic acid-b-styrene-b-isobutylene-b-styrene-b-acrylic acid) pentatriblock copolymers from a combination of quasiliving carbocationic and atom transfer radical polymerization. Polymer 2005, 46, 2141–2152.

    Article  CAS  Google Scholar 

  23. Storey, R. F.; Scheuer, A. D.; Achord, B. C. Poly(acrylate-b-styrene-b-isobutylene-b-styrene-b-acrylate) triblock copolymers via carbocationic and atom transfer radical polymerizations. J. Macromol. Sci. Part A Pure Appl. Chem. 2006, 43, 1493–1512.

    Article  CAS  Google Scholar 

  24. Kopchick, J. G.; Storey, R. F.; Jarrett, W. L.; Mauritz, K. A. Morphology of poly[(t-butyl acrylate)-b-styrene-b-isobutylene-b-styrene-b-(t-butyl acrylate)] pentatriblock terpolymers and their thermal conversion to the acrylic acid form. Polymer 2008, 49, 5045–5052.

    Article  CAS  Google Scholar 

  25. Zhu, Y.; Storey, R. F. Synthesis of polyisobutylene-based miktoarm star polymers from a dicationic monoradical dual initiator. Macromolecules 2012, 45, 5347–5357.

    Article  CAS  Google Scholar 

  26. Yuan, S. S.; Zhao, J.; Luan, S. F.; Yan, S. J.; Zheng, W. L.; Yin, J. H. Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with anti-infection and tissue integration bifunctions. ACS Appl. Mater. Interfaces 2014, 6, 18078–18086.

    Article  CAS  PubMed  Google Scholar 

  27. Theiler, S.; Diamantouros, S. E.; Jockenhoevel, S.; Keul, H.; Moeller, M. Synthesis and characterization of biodegradable polyester/polyether resins via Michael-type addition. Polym. Chem. 2011, 2, 2273–2283.

    Article  CAS  Google Scholar 

  28. Zhang, F.; Zhang, H. T.; Yang, T.; Kong, B.; Guo, A. R.; Zhang, Q.; Wu, Y. X. Synthesis and property of novel functionalized polytetrahydrofuran-b-polyisobutylene-b-polytetrahydrofuran triblock copolymers. Acta Polymerica Sinica (in Chinese) 2020, 51, 98–116.

    Google Scholar 

  29. Hourston, D. J.; Williams, G. D.; Satguru, R.; Padget, J. C.; Pears, D. The influence of the degree of neutralization, the ionic moiety, and the counterion on water-dispersible polyurethanes. J. Appl. Polym. Sci. 1999, 74, 556–566.

    Article  CAS  Google Scholar 

  30. Jikei, M.; Aikawa, Y.; Matsumoto, K. Synthesis and properties of poly(ether sulfone)-poly(tetrahydrofuran) multitriblock copolymers. High Perform. Polym. 2016, 28, 1015–1023.

    Article  CAS  Google Scholar 

  31. Zhang, H. T.; Zhang, F.; Wu, Y. X. Robust stretchable thermoplastic polyurethanes with long soft segments and steric semisymmetric hard segments. Ind. Eng. Chem. Res. 2020, 59, 4483–4492.

    Article  CAS  Google Scholar 

  32. Rasolonjatovo, B.; Pitard, B.; Haudebourg, T.; Bennevault, V.; Guégan, P. Synthesis of tetraarm star triblock copolymer based on polytetrahydrofuran and poly(2-methyl-2-oxazoline) for gene delivery applications. Eur. Polym. J. 2017, 88, 689–700.

    Article  CAS  Google Scholar 

  33. Wei, M. J.; Zhang, Q.; Zhang, H. T.; Wu, Y. X. In situ preparation and properties of poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene)/Ag nanocomposites via cationic polymerization. Acta Polymerica Sinica (in Chinese) 2018, 464–474.

    Google Scholar 

  34. Chang, T. X.; Zhang, H. T.; Lu, C. J.; Wu, Y. X. In situ synthesis and characterization of chitosan-g-polytetrahydrofuran graft copolymer/Ag nanocomposite via living cationic polymerization. Acta Polymerica Sinica (in Chinese) 2018, 700–711.

    Google Scholar 

  35. Gao, Y. Z.; Chang, T. X.; Wu, Y. X. In situ preparation and properties of bio-renewable acylated sodium alginate-g-polytetrahydrofuran/Ag-NPs nanocomposites. Appl. Surf. Sci. 2019, 483, 1027–1036.

    Article  CAS  Google Scholar 

  36. Deng, J. R.; Zhao, C. L.; Wu, Y. X. Antibacterial and pH-responsive quaternized hydroxypropyl cellulose-g-poly(THF-co-epichlorohydrin) graft copolymer: synthesis, characterization and properties. Chinese J. Polym. Sci. 2020, 38, 704–714.

    Article  CAS  Google Scholar 

  37. Guo, A. R.; Yang, W. X.; Yang, F.; Yu, R.; Wu, Y. X. Well-defined poly(γ-benzyl-L-glutamate)-g-polytetrahydrofuran: synthesis, characterization, and properties. Macromolecules 2014, 47, 5450–5461.

    Article  CAS  Google Scholar 

  38. Liu, X.; Li, S. R.; Wu, Y. X. Synthesis and characterization of poly(vinyl acetate)-g-polytetrahydrofuran graft copolymer with silver nanoparticles via combination of living cationic polymerization and grafting-onto approach. Acta Polymerica Sinica (in Chinese) 2017, 1753–1761.

    Google Scholar 

  39. Wei, M. J.; Guo, A. R.; Wu, Y. X. Microstructure and micromorphology of poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene) copolymer. Acta Polymerica Sinica (in Chinese) 2017, 506–515.

    Google Scholar 

  40. Gao, Y. Z.; Chang, T. X.; Wu, Y. X. In-sttu synthesis of acylated sodium alginate-g-(tetrahydrofuran5-b-polyisobutylene) terpolymer/Ag-NPs nanocomposites. Carbohydr. Polym. 2019, 219, 201–209.

    Article  CAS  PubMed  Google Scholar 

  41. Chang, T. X.; Wei, Z. T.; Wu, M. Y.; Zhang, H. T.; Gao, Y. Z.; Wu, Y. X. Amphiphilic chitosan-g-polyisobutylene graft copolymers: synthesis, characterization, and properties. ACS Appl. Polym. Mater. 2020, 2, 234–247.

    Article  CAS  Google Scholar 

  42. Deng, J. R.; Wu, Y. X. Green synthesis and biomedical properties of novel hydroxypropyl cellulose-g-polytetrahydrofuran graft copolymers with silver nanoparticles. Ind. Eng. Chem. Res. 2019, 59, 732–742.

    Article  Google Scholar 

  43. Kennedy, J. P.; Smith, R. A. New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). II. Synthesis and characterization of α,α-di(tert-chloro)polyisobutylenes. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 1523–1537.

    Article  CAS  Google Scholar 

  44. Wu, H. X.; Zhang, X. H.; Huang, L.; Ma, L. F.; Liu, C. J. Ditriblock polymer brush (PHEAA-b-PFMA): microphase separation behavior and anti-protein adsorption performance. Langmuir 2018, 34, 11101–11109.

    Article  CAS  PubMed  Google Scholar 

  45. Han, C. D.; Kim, J.; Kim, J. K. T. Determination of the orderdisorder transition temperature of triblock copolymers. Macromolecules 1989, 22, 383–394.

    Article  CAS  Google Scholar 

  46. Van, Beek D. J. M.; Spiering, A. J. H.; Peters, G. W. M.; Nijenhuis K.; Sijbesma, R. P. Unidirectional dimerization and stacking of ureidopyrimidinone end groups in polycaprolactone supramolecular polymers. Macromolecules 2007, 40, 8464–8475.

    Article  CAS  Google Scholar 

  47. Yang, J. H.; Lee, J.; Lim, S.; Jung, S.; Jang, S. H.; Jang, S. H.; Kwak, S. Y.; Ahn, S.; Jung, Y.; C.;, Priestley R. D.; Chung, J. W. Understanding and controlling the self-healing behavior of 2-ureido-4[1H]-pyrimidinone-functionalized clustery and dendritic dual dynamic supramolecular network. Polymer 2019, 172, 13–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China Petrochemical Corporation and the Fundamental Research Funds for the Central Universities (Nos. XK1802-2 and XK1802-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xian Wu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HT., Wei, ZT., Zhang, F. et al. Nanocrystallization-locked Network of Poly(styrene-b-isobutylene-b-styrene)-g-Polytetrahydrofuran Block Graft Copolymer. Chin J Polym Sci 39, 874–886 (2021). https://doi.org/10.1007/s10118-021-2536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2536-9

Keywords

Navigation