Skip to main content
Log in

Formation of electroactive biofilms derived by nanostructured anodes surfaces

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) have significant interest in the research community due to their ability to generate electricity from biodegradable organic matters. Anode materials and their morphological structures play a crucial role in the formation of electroactive biofilms that enable the direct electron transfer. In this work, modified electrodes with nanomaterials, such as multiwalled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), Al2O3/rGO or MnO2/MWCNTs nanocomposites were synthesized, characterized and utilized to support the growth of electrochemically active biofilms. The MFC's performance is optimized using anode-respiring strains isolated from biofilm-anode surface, while the adjusted operation is conducted with the consortium of (Enterobacter sp.). Besides the formation of matured biofilm on its surface, MnO2/MWCNTs nanocomposite produced the highest electrical potential outputs (710 mV) combined with the highest power density (372 mW/m2). Thus, a correlation between the anode nanostructured materials and the progression of the electrochemically active biofilms formation is presented, allowing new thoughts for enhancing the MFC's performance for potential applications ranging from wastewater treatment to power sources.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fraiwan A, Adusumilli SP, Han D, Steckl AJ, Call DF, Westgate CR, Choi S (2014) Microbial power-generating capabilities on micro-/nano-structured anodes in micro-sized microbial fuel cells. Fuel Cells 14:801–809

    Article  CAS  Google Scholar 

  2. Guang L, Koomson DA, Jingyu H, Ewusi-Mensah D, Miwornunyuie N (2020) Performance of exoelectrogenic bacteria used in microbial desalination cell technology. Int J Environ Res Public Health 17:1121–1132

    Article  CAS  Google Scholar 

  3. Zhang P, Liu J, Qu Y, Zhang J, Zhong Y, Feng Y (2017) Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm. J Power Sources 361:318–325

    Article  CAS  Google Scholar 

  4. Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475

    Article  CAS  Google Scholar 

  5. Reardon PN, Mueller KT (2013) Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J Biol Chem 288:29260–29266

    Article  CAS  Google Scholar 

  6. Fapetu S, Keshavarz T, Clements M, Kyazze G (2016) Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst. Biotechnol Lett 38:1465–1473

    Article  CAS  Google Scholar 

  7. Hu Y, Yang Y, Katz E, Song H (2015) Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun (Camb) 51:4184–4187

    Article  CAS  Google Scholar 

  8. Selim HMM, Kamal AM, Ali DMM, Hassan RYA (2017) Bioelectrochemical systems for measuring microbial cellular functions. Electroanalysis 29:1498–1505

    Article  CAS  Google Scholar 

  9. Hassan RYA, Wollenberger U (2016) Mediated bioelectrochemical system for biosensing the cell viability of Staphylococcus aureus. Anal Bioanal Chem 408:579–587

    Article  CAS  Google Scholar 

  10. Hassan RYA, Mekawy MM, Ramnani P, Mulchandani A (2017) Monitoring of microbial cell viability using nanostructured electrodes modified with graphene/alumina nanocomposite. Biosens Bioelectron 91:857–862

    Article  CAS  Google Scholar 

  11. Ding WJ, Yu LL, Chen J, Cheng SA (2017) Effects of anode materials on electricity generation and organic wastewater treatment of 6 L microbial fuel cells. Huan Jing Ke Xue 38:1911–1917

    PubMed  Google Scholar 

  12. Sonawane JM, Yadav A, Ghosh PC, Adeloju SB (2017) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron 90:558–576

    Article  CAS  Google Scholar 

  13. Liu Y, Harnisch F, Fricke K, Schroder U, Climent V, Feliu JM (2010) The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron 25:2167–2171

    Article  CAS  Google Scholar 

  14. Mahmoud RH, Samhan FA, Ali GH, Ibrahim MK, Hassan RYA (2018) Assisting the biofilm formation of exoelectrogens using nanostructured microbial fuel cells. J Electroanal Chem 824:128–135

    Article  CAS  Google Scholar 

  15. Mustakeem M (2015) Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew Sustain Energy 4:22

    Article  Google Scholar 

  16. Kipf E, Koch J, Geiger B, Erben J, Richter K, Gescher J, Zengerle R, Kerzenmacher S (2013) Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol 146:386–392

    Article  CAS  Google Scholar 

  17. Flores-Sifuentes J, Sánchez-Cardona KV, Acosta-Arreazola F, Sánchez-Domínguez M, Garza-Tovar LL, Sepúlveda-Guzmán S, Garza-Montes-de-Oca NF, Garcia-Gomez NA, Sánchez EM (2018) Preparation of CuO/CNF composite and its performance as anode in a microbial fuel cell with Shewanella oneidensis in a half cell configuration. J Mater Sci Mater Electron 29:15784–15794

    Article  CAS  Google Scholar 

  18. Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435

    Article  CAS  Google Scholar 

  19. Di Lorenzo M, Scott K, Curtis TP, Head IM (2010) Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem Eng J 156:40–48

    Article  Google Scholar 

  20. Gajda I, Greenman J, Ieropoulos IA (2018) Recent advancements in real-world microbial fuel cell applications. Curr Opin Electrochem 11:78–83

    Article  CAS  Google Scholar 

  21. Mahmoud RH, Abdo SM, Samhan FA, Ibrahim MK, Ali GH, Hassan RY (2020) Biosensing of algal-photosynthetic productivity using nanostructured bioelectrochemical systems. J Chem Technol Biotechnol 95:1028–1037

    CAS  Google Scholar 

  22. Liu Y, Zhang X, Zhang Q, Li C (2020) Microbial fuel cells: nanomaterials based on anode and their application. Energy Technol 8:2000206

    Article  Google Scholar 

  23. Elumalai P, AlSalhi MS, Mehariya S, Karthikeyan OP, Devanesan S, Parthipan P, Rajasekar A (2020) Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment. Bioprocess Biosyst Eng 1–14

  24. Armato C, Ahmed D, Agostino V, Traversi D, Degan R, Tommasi T, Margaria V, Sacco A, Gilli G, Quaglio M, Saracco G, Schilirò T (2019) Anodic microbial community analysis of microbial fuel cells based on enriched inoculum from freshwater sediment. Bioprocess Biosyst Eng 42:697–709

    Article  CAS  Google Scholar 

  25. Mahmoud RH, Samhan FA, Ibrahim MK, Ali GH, Hassan RYA (2020) Boosting the cathode function toward the oxygen reduction reaction in microbial fuel cell using nanostructured surface modification. Electrochem Sci Adv. https://doi.org/10.1002/elsa.202000002

    Article  Google Scholar 

  26. Sedki M, Hassan RYA, Andreescu S, El-Sherbiny IM (2019) Online-monitoring of biofilm formation using nanostructured electrode surfaces. Mater Sci Eng C 100:178–185

    Article  CAS  Google Scholar 

  27. Kang J, Kim T, Tak Y, Lee J-H, Yoon J (2012) Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J Ind Eng Chem 18:800–807

    Article  CAS  Google Scholar 

  28. Mekawy MM, Hassan RYA, Ramnani P, Yu X, Mulchandani A (2018) Electrochemical detection of dihydronicotinamide adenine dinucleotide using Al2O3-GO nanocomposite modified electrode. Arabian J Chem 11:942–949

    Article  CAS  Google Scholar 

  29. Khater DZ, El-Khatib KM, Hassan RYA (2018) Effect of vitamins and cell constructions on the activity of microbial fuel cell battery. J Genet Eng Biotechnol 16:369–373

    Article  Google Scholar 

  30. Khater DZ, El-Khatib KM, Hazaa MM, Hassan RYA (2015) Development of bioelectrochemical system for monitoring the biodegradation performance of activated sludge. Appl Biochem Biotechnol 175:3519–3530

    Article  CAS  Google Scholar 

  31. Purkait T, Singh G, Kumar D, Singh M, Dey RS (2018) High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 8:640

    Article  Google Scholar 

  32. Fu Y, Yu J, Zhang Y, Meng Y (2014) Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells. Appl Surf Sci 317:84–89

    Article  CAS  Google Scholar 

  33. Kalathil S, Van Nguyen H, Shim JJ, Khan MM, Lee J, Cho MH (2013) Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanotechnol 13:7712–7716

    Article  CAS  Google Scholar 

  34. Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Hu H, Yu CP (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS ONE 9:e113379

    Article  Google Scholar 

  35. Park DH, Zeikus JG (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59:58–61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by an internal Grant funded by the NRC (Project code:11050110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabeay Y. A. Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, R.H., Samhan, F.A., Ibrahim, M.K. et al. Formation of electroactive biofilms derived by nanostructured anodes surfaces. Bioprocess Biosyst Eng 44, 759–768 (2021). https://doi.org/10.1007/s00449-020-02485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02485-4

Keywords

Navigation