Skip to main content
Log in

Acid-catalyzed fractionation of almond shells in γ-valerolactone/water

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The fractionation of almond shells, an agro-industry residue available in some Mediterranean climate regions, was investigated using acid-catalyzed hydrolysis in γ-valerolactone (GVL)/water. A set of non-isothermal experiments at nominal temperatures of 120, 140, and 160 °C and sulfuric acid concentrations from 25 to 75 mM were developed using a constant 80% w/w GVL in water concentration and a reaction time of up to 120 min. GVL was an efficient medium and promoted solubilization of both lignin and hemicellulose, even at low temperature during the initial period of reactor heating, while cellulose conversion was limited. A temperature of 160 °C gave the highest extraction of lignin and hemicellulose, but recovery of hemicellulose carbohydrates was better below 140 °C. Sulfuric acid concentrations above 45 mM promoted excessive dehydration of xylose and glucose to furans and humins, which were recovered with lignin. A model was developed to describe the kinetics of lignin and hemicellulose solubilization. It distinguished three fractions of different reactivity in each polymer (lignin or hemicellulose): fast-reacting, slow-reacting, and unreactive. The amount of each fraction was correlated with acid concentration and reaction temperature. Activation energies and the other parameters in the model were obtained numerically by least-squares optimization using the data from the non-isothermal experiments. Activation energies for the fast-reacting and slow-reacting fractions of hemicellulose were 142 and 39.7 kJ mol−1, and for those of lignin 134 and 71.7 kJ mol−1, respectively. Acid concentration had a larger influence than temperature on establishing the amounts of slow-reacting hemicellulose and lignin, whereas temperature was the dominant variable concerning the fractions of non-reacting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/b922014c

    Article  Google Scholar 

  2. Bodachivskyi I, Kuzhiumparambil U, Williams DBG (2018) Acid-catalyzed conversion of carbohydrates into value-added small molecules in aqueous media and ionic liquids. ChemSusChem 11:642–660. https://doi.org/10.1002/cssc.201702016

    Article  Google Scholar 

  3. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678. https://doi.org/10.1021/acs.chemrev.7b00588

    Article  Google Scholar 

  4. Paone E, Tabanelli T, Mauriello F (2020) The rise of lignin biorefinery. Curr Opin Green Sustainable Chem 24:1–6. https://doi.org/10.1016/j.cogsc.2019.11.004

    Article  Google Scholar 

  5. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  6. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  7. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  Google Scholar 

  8. Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioprod Bioref 11:567–590. https://doi.org/10.1002/bbb.1768

    Article  Google Scholar 

  9. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381. https://doi.org/10.1039/c5gc02034d

  10. Mellmer MA, Alonso DM, Luterbacher JS, Galloa JMR, Dumesic JA (2014) Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chem 16:4659–4662. https://doi.org/10.1039/C4GC01768D

    Article  Google Scholar 

  11. Lê HQ, Ma Y, Borrega M, Sixta H (2016) Wood biorefinery based on γ-valerolactone/water fractionation. Green Chem 18:5466–5476. https://doi.org/10.1039/C6GC01692H

  12. Fang W, Sixta H (2015) Advanced biorefinery based on the fractionation of biomass in γ-valerolactone and water. ChemSusChem 8:73–76. https://doi.org/10.1002/cssc.201402821

    Article  Google Scholar 

  13. Zhang L, Zhen W, Wang Z, Maa Y, Jiang L, Wang T (2018) Efficient degradation of lignin in raw wood via pre-treatment with heteropoly acids in γ-valerolactone/water. Bioresour Technol 261:70–75. https://doi.org/10.1016/j.biortech.2018.03.141

    Article  Google Scholar 

  14. Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pre-treatment using γ-valerolactone for concentrated sugar production. Green Chem 18:937–943. https://doi.org/10.1039/C5GC02489G

    Article  Google Scholar 

  15. Trevorah RM, Huynh T, Vancov T, Othman MZ (2018) Bioethanol potential of Eucalyptus Obliqua sawdust using gamma-valerolactone fractionation. Bioresour Technol 250:673–682. https://doi.org/10.1016/j.biortech.2017.11.084

    Article  Google Scholar 

  16. Zhou X, Ding D, You T, Zhang X, Takabe K, Xu F (2018) Synergetic dissolution of branched xylan and lignin opens the way for enzymatic hydrolysis of Poplar cell wall. J Agric Food Chem 66:3449–3456. https://doi.org/10.1021/acs.jafc.8b00320

    Article  Google Scholar 

  17. Qing Q, Gao X, Wang P, Guo Q, Xu Z, Wang L (2018) Dilute acid catalyzed fractionation and sugar production from bamboo shoot shell in γ-valerolactone/water medium. RSC Adv. 8:17527–17534. https://doi.org/10.1039/C8RA02891E

    Article  Google Scholar 

  18. Li S, Li M, Yu P, Fan Y, Shou J, Sun R (2017) Valorization of bamboo by γ-valerolactone/acid/water to produce digestible cellulose, degraded sugars and lignin. Bioresour Technol 230:90–96. https://doi.org/10.1016/j.biortech.2017.01.041

    Article  Google Scholar 

  19. Wu M, Yan ZY, Zhang XM, Xu F, Sun RC (2016) Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. Bioresour Technol 200:23–28. https://doi.org/10.1016/j.biortech.2015.09.111

    Article  Google Scholar 

  20. Queirós CSGP, Cardoso S, Lourenço A, Ferreira J, Miranda I, Lourenço MJV, Pereira H (2020) Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conv Bioref 10:175–188. https://doi.org/10.1007/s13399-019-00424-2

    Article  Google Scholar 

  21. Montané D, Salvadó J, Farriol X, Chornet E (1993) The fractionation of almond shells by thermomechanical aqueous phase (TMAV) pretreatment. Biomass Bioenergy 4:427–437. https://doi.org/10.1016/0961-9534(93)90064-B

    Article  Google Scholar 

  22. Martínez JM, Granado JM, Montané D, Salvadó J, Farriol X (1995) Fractionation of residual lignocellulosics by dilute-acid prehydrolysis and alkaline extraction: application to almond shells. Bioresour Technol 52:59–67. https://doi.org/10.1016/0960-8524(95)00005-Y

    Article  Google Scholar 

  23. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Technical Report NREL/TP-510-42621

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Technical Report NREL/TP-510-42622

  25. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. Technical Report NREL/TP-510-42619

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618

  27. Nabarlatz D, Montané D, Kardošová A, Bekešová S, Hríbalová V, Ebringerová A (2007) Almond shell xylo-oligosaccharides exhibiting immunostimulatory activity. Carbohydr Res 342:1122–1128. https://doi.org/10.1016/j.carres.2007.02.017

    Article  Google Scholar 

  28. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical Report NREL/TP-510-42623

  29. Meng X, Bhagia S, Wang Y, Zhou Y, Pu Y, Dunlap JR, Shuai L, Ragauskas AJ, Yoo CG (2020) Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind Crops Prod 146:112114. https://doi.org/10.1016/j.indcrop.2020.112144

    Article  Google Scholar 

  30. Overend R, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans Royal Soc London A321:523–536. https://doi.org/10.1098/rsta.1987.0029

    Article  Google Scholar 

  31. Heitz M, Capek-Ménard E, Koeberle PG, Gagné J, Chornet E (1991) Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE II technology. Bioresour Technol 35:23–32. https://doi.org/10.1016/0960-8524(91)90078-X

    Article  Google Scholar 

  32. Smit A, Huijgen W (2017) Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem 19:5505–5514. https://doi.org/10.1039/C7GC02379K

    Article  Google Scholar 

  33. Shi N, Liu Q, Cen H, Ju R, He X, Ma L (2020) Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Convers Biorefin 10:277–287. https://doi.org/10.1007/s13399-019-00414-4

    Article  Google Scholar 

  34. Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52. https://doi.org/10.1021/ie50421a009

    Article  Google Scholar 

  35. Nabarlatz D, Farriol X, Montané D (2004) Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides. Ind Eng Chem Res 43:4124–4131. https://doi.org/10.1021/ie034238i

    Article  Google Scholar 

  36. Jensen J, Morinelly J, Anglan A, Mix A, Shonnard DR (2008) Kinetic characterization of biomass dilute sulfuric acid hydrolysis: mixtures of hardwoods, softwood, and switchgrass. AIChE J 54:1637–1645. https://doi.org/10.1002/aic.11467

    Article  Google Scholar 

  37. Shi S, Guan W, Kang L, Lee YY (2017) Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions. Ind Eng Chem Res 56:10990–10997. https://doi.org/10.1021/acs.iecr.7b01768

    Article  Google Scholar 

  38. Oliet M, Rodríguez F, Santos A, Gilarranz MA, García-Ochoa F, Tijero J (2000) Organosolv delignification of eucalyptus globulus: kinetic study of autocatalyzed ethanol pulping. Ind Eng Chem Res 39:34–39. https://doi.org/10.1021/ie9905005

    Article  Google Scholar 

  39. Sidiras D, Koukios E (2004) Simulation of acid-catalysed organosolv fractionation of wheat straw. Bioresour Technol 94:91–98. https://doi.org/10.1016/j.biortech.2003.10.029

    Article  Google Scholar 

  40. Zhao X, Liu D (2013) Kinetic modeling and mechanisms of acid-catalyzed delignification of sugarcane bagasse by aqueous acetic acid. Bioener Res 6:436–447. https://doi.org/10.1007/s12155-012-9265-4

    Article  Google Scholar 

  41. Sharazi AM, Van Heiningen A (2017) Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of sugarcane straw (SCS). Tappi J 16:313–328

    Article  Google Scholar 

  42. Liu J, Gong Z, Yang G, Chen L, Huang L, Zhou Y, Luo X (2018) Novel kinetic models of xylan dissolution and degradation during ethanol based auto-catalyzed organosolv pretreatment of bamboo. Polymers 10:1449. https://doi.org/10.3390/polym10101149

    Article  Google Scholar 

  43. Dagnino EP, Felissia FE, Chamorro E, Area MC (2018) Studies on lignin extraction from rice husk by a soda-ethanol treatment: kinetics, separation, and characterization of products. Chem Eng Res Des 129:209–216. https://doi.org/10.1016/j.cherd.2017.10.026

    Article  Google Scholar 

  44. Duan Q, Shuai X, Yang D, Zhou X, Gao T (2020) Kinetic analysis of pulping of rice straw with p-toluene sulfonic acid. ACS Omega 5:7787–7791. https://doi.org/10.1021/acsomega.9b03622

    Article  Google Scholar 

  45. Mellmer MA, Sener C, Gallo JMR, Luterbacher JS, Alonso DM, Dumesic JA (2014) Solvent effects in acid-catalyzed biomass conversion reactions. Angew Chem Int Ed 53:11872–11875. https://doi.org/10.1002/anie.201408359

    Article  Google Scholar 

Download references

Funding

This study was funded by the Universitat Rovira i Virgili (2018PFR-URV-B2-33) and supported by the Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya (2017-SGR-00396)

Author information

Authors and Affiliations

Authors

Contributions

Arianna Corti: planning and development of the fractionation experiments. Data processing and discussion of results.

Esther Torrens: development of the analytical methods and technical support. Revision of the manuscript.

Daniel Montané: planning of the fractionation experiments. Data processing, modeling, and discussion of results. Manuscript preparation and writing. Final edition.

Corresponding author

Correspondence to Daniel Montané.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corti, A., Torrens, E. & Montané, D. Acid-catalyzed fractionation of almond shells in γ-valerolactone/water. Biomass Conv. Bioref. 13, 2729–2743 (2023). https://doi.org/10.1007/s13399-020-01261-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01261-4

Keywords

Navigation